20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程是$y=\sqrt{3}x$,它與橢圓$\frac{x^2}{100}+\frac{y^2}{64}=1$有相同的焦點,則雙曲線的方程為( 。
A.$\frac{x^2}{9}-\frac{y^2}{27}=1$B.$\frac{x^2}{36}-\frac{y^2}{108}=1$C.$\frac{x^2}{108}-\frac{y^2}{36}=1$D.$\frac{x^2}{27}-\frac{y^2}{9}=1$

分析 求出橢圓的焦點,即有雙曲線的c,再由a,b,c的關(guān)系和漸近線方程,得到a,b的方程,解得a,b,即可得到雙曲線方程.

解答 解:橢圓$\frac{x^2}{100}+\frac{y^2}{64}=1$的焦點為(±6,0),
則雙曲線的c=4,即a2+b2=36,
由雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程是$y=\sqrt{3}x$,則b=$\sqrt{3}$a,
解得,a=3,b=3$\sqrt{3}$.
則雙曲線的方程為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{27}$=1.
故選A.

點評 本題考查橢圓和雙曲線的方程和性質(zhì),考查漸近線方程的運用,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x2-2tx+2,其中 t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對任意的x∈[a,a+2],都有f(x)<5,求實數(shù)a的取值范圍;
(3)若對任意的x1,x2∈[0,4],都有f(x1)-f(x2)≤8,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.下列命題:
①偶函數(shù)的圖象一定與y軸相交;  
 ②定義在R上的奇函數(shù)f(x)必滿足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函數(shù)又不是偶函數(shù);
④f(x)=$\frac{1}{x}$在(-∞,0)∪(0,+∞)上是減函數(shù).其中真命題的序號是②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax
(Ⅰ)當(dāng)a=2時,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a<0時,討論f(x)的單調(diào)性;
(Ⅲ)若對任意的a∈(-3,-2),x1,x2∈[1,3]恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1焦點在x軸上,其中a=6,e=$\frac{1}{3}$,求橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓C的長軸長為10,焦距為6,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在sinB=$\frac{{\sqrt{3}}}{2}$中,B=60°,AC=$\sqrt{3}$,則AB+2BC的最大值為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{a}$=(x,0),$\overrightarrow$=(1,y),且($\overrightarrow{a}$+$\sqrt{3}$$\overrightarrow$)⊥($\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$).
(1)求點P(x,y)的軌跡C的方程;
(2)若直線y=kx+m(k≠0)與曲線C交于A,B兩點,D(0,-1),且|AD|=|DB|,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知程序框圖如圖,若a=0.62,b=30.5,c=log0.55,則輸出的數(shù)是( 。
A.aB.bC.cD.d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則2$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow$方向上的投影為3.

查看答案和解析>>

同步練習(xí)冊答案