已知α∈(0,
π
2
),β∈(
π
2
,π),cosα=
5
5
,sin (α-β)=
10
10
,則β=
 
考點(diǎn):兩角和與差的正弦函數(shù)
專(zhuān)題:三角函數(shù)的求值
分析:由已知可得sinα=
1-cos2α
=
2
5
5
,sinβ>0,
2
5
5
cosβ=
5
5
sinβ+
10
10
,兩邊平方整理得方程:sin2β+
2
5
sinβ-
7
10
=0,結(jié)合角的范圍即可得解.
解答: 解:∵α∈(0,
π
2
),β∈(
π
2
,π),cosα=
5
5
,sin (α-β)=
10
10
,
∴可得:sinα=
1-cos2α
=
2
5
5
,sinβ>0,
∴sinαcosβ-cosαsinβ=
2
5
5
cosβ-
5
5
sinβ=
10
10
,
2
5
5
cosβ=
5
5
sinβ+
10
10

∴兩邊平方,整理可得:sin2β+
2
5
sinβ-
7
10
=0
∴可解得:sinβ=
2
2

∴可得β=
4

故答案為:
4
點(diǎn)評(píng):本題主要考查了兩角和與差的正弦函數(shù)公式的應(yīng)用,考查了三角函數(shù)恒等變換,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直角坐標(biāo)平面內(nèi)A、B兩點(diǎn)滿足:①點(diǎn)A、B都在函數(shù)f(x)的圖象上;②點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱(chēng),則這兩點(diǎn)A、B構(gòu)成函數(shù)f(x)的一個(gè)“姊妹點(diǎn)對(duì)”,已知函數(shù)f(x)=
x2+2x(x<0)
2
ex
(x≥0)
,則f(x)的“姊妹點(diǎn)對(duì)”有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知整數(shù)數(shù)集 A={a1,a2,a3,…,an}(a1<a2<a3<…<an,n≥3)具有性質(zhì) P:對(duì)任意i,j,k(1≤i<j<k),ai+ak-aj∈A.
(Ⅰ)請(qǐng)舉出一個(gè)滿足上述條件且含有5個(gè)元素的數(shù)集 A;
(Ⅱ)求證:a1,a2,a3,…,an是等差數(shù)列;
(Ⅲ)已知a1=2,an=2015,且20∈A⊆N,求數(shù)集 A中所有元素的和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是圓O上的兩點(diǎn),且OA⊥OB,OA=2,C為OA的中點(diǎn),連接BC并延長(zhǎng)交圓O于點(diǎn)D,則CD=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知R為實(shí)數(shù)集,已知集合M={y|y=
4-x2
},N={x|y=
x-1
},則M∩(∁RN)=( 。
A、{x|0≤x<1}
B、{x|-2≤x<1}
C、{x|0≤x≤2}
D、{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(3π-α)=
2
cos(
2
+β),cos(π-α)=
6
3
cos(π+β),且0<α<π,0<β<π,求sinα和cosβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=3,則
sinα+cosα
sinα-2cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足:z•
.
z
+2iz=8+6i,求復(fù)數(shù)z的實(shí)部與虛部的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an},S10=100,S20=10,S30=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案