【題目】已知圓,圓與圓關(guān)于直線對稱.

(1)求圓的方程;

(2)過直線上的點分別作斜率為的兩條直線,使得被圓截得的弦長與被圓截得的弦長相等.

(i)求的坐標;

(ⅱ)過任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長是否恒相等,并說明理由.

【答案】(1);(2)(i),(ii)見解析

【解析】

(1)根據(jù)題意,將問題轉(zhuǎn)化為關(guān)于直線的對稱點即可得到,半徑不變,從而得到方程;

(2) (i) 設(shè),由于弦長和距離都相等,故P到兩直線的距離也相等,利用點到線距離公式即可得到答案;

(ⅱ)分別討論斜率不存在和為0三種情況分別計算對應(yīng)弦長,故可判斷.

(1)設(shè),因為圓與圓關(guān)于直線對稱,

則直線與直線垂直,中點在直線上,得

解得所以圓.

(2)(i)設(shè)的方程為,即;

的方程為,即.

因為被圓截得的弦長與被圓截得的弦長相等,且兩圓半徑相等,

所以的距離與的距離相等,即,

所以.

由題意,到直線的距離,

所以不滿足題意,舍去,

,點坐標為.

(ii)過點任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.

證明如下:

的斜率等于0時,的斜率不存在,被圓截得的弦長與被圓截得的弦長都等于圓的半徑;

的斜率不存在,的斜率等于0時,與圓不相交,與圓不相交.

的斜率存在且都不等于0,兩條直線分別與兩圓相交時,設(shè)、的方程分別為,即.

因為的距離

的距離,所以的距離與的距離相等.

所以圓與圓的半徑相等,所以被圓截得的弦長與被圓截得的弦長恒相等.

綜上所述,過點任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分) 某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng)),系統(tǒng)在任意時刻發(fā)生故障的概率分別為。

(Ⅰ)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求的值;

(Ⅱ)設(shè)系統(tǒng)在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量,求的概率分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,若輸出的y值為5,則判斷框中可填入的條件是(

A.i<3
B.i<4
C.i<5
D.i<6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)當時,若存在,使不等式成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在很多人喜歡自助游,2017年孝感楊店桃花節(jié),美麗的桃花風景和人文景觀迎來眾多賓客.某調(diào)查機構(gòu)為了了解自助游是否與性別有關(guān),在孝感桃花節(jié)期間,隨機抽取了人,得如下所示的列聯(lián)表:

贊成自助游

不贊成自助游

合計

男性

女性

合計

1若在這人中,按性別分層抽取一個容量為的樣本,女性應(yīng)抽人,請將上面的列聯(lián)表補充完整,并據(jù)此資料能否在犯錯誤的概率不超過前提下認為贊成自助游是與性別有關(guān)系?

2若以抽取樣本的頻率為概率,從旅游節(jié)大量游客中隨機抽取人贈送精美紀念品,記這人中贊成自助游人數(shù)為,的分布列和數(shù)學期望.

:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=emx﹣lnx﹣2.
(1)若m=1,證明:存在唯一實數(shù)t∈( ,1),使得f′(t)=0;
(2)求證:存在0<m<1,使得f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市大力推廣純電動汽車,對購買用戶依照車輛出廠續(xù)駛里程的行業(yè)標準,予以地方財政補貼.其補貼標準如下表:

2017年底隨機調(diào)査該市1000輛純電動汽車,統(tǒng)計其出廠續(xù)駛里程,得到頻率分布直方圖如圖所示.

用樣本估計總體,頻率估計概率,解決如下問題:

(1)求該市純電動汽車2017年地方財政補貼的均值;

(2)某企業(yè)統(tǒng)計2017年其充電站100天中各天充電車輛數(shù),得如下的頻數(shù)分布表:

(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)

2018年2月,國家出臺政策,將純電動汽車財政補貼逐步轉(zhuǎn)移到充電基礎(chǔ)設(shè)施建設(shè)上來.該企業(yè)擬將轉(zhuǎn)移補貼資金用于添置新型充電設(shè)備.現(xiàn)有直流、交流兩種充電樁可供購置.直流充電樁5萬元/臺,每臺每天最多可以充電30輛車,每天維護費用500元/臺; 交流充電樁1萬元/臺,每臺每天最多可以充電4輛車,每天維護費用80元/臺.

該企業(yè)現(xiàn)有兩種購置方案:

方案一:購買100臺直流充電樁和900臺交流充電樁;

方案二:購買200臺直流充電樁和400臺交流充電樁.

假設(shè)車輛充電時優(yōu)先使用新設(shè)備,且充電一輛車產(chǎn)生25元的收入,用2017年的統(tǒng)計數(shù)據(jù),分別估計該企業(yè)在兩種方案下新設(shè)備產(chǎn)生的日利潤.(日利潤日收入日維護費用)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計表明某型號汽車在勻速行駛中每小時的耗油量()關(guān)于行駛速度(千米/小時)的函數(shù)為

(1)千米/小時時,行駛千米耗油量多少升

(2)若油箱有升油,則該型號汽車最多行駛多少千米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線截以坐標原點為圓心的圓所得的弦長為.

(1)求圓的方程;

(2)若直線與圓切于第一象限,且與坐標軸交于點,,當時,求直線的方程;

(3)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點為,若直線,分別交軸于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案