【題目】已知雙曲線的左,右焦點(diǎn)分別為,若雙曲線上存在點(diǎn),使,則該雙曲線的離心率范圍為( )

A. (1,1 B. (1,1 C. (1,1] D. (1,1]

【答案】A

【解析】由題意,點(diǎn) 不是雙曲線的頂點(diǎn),否則 無(wú)意義, 由正弦定理得, , 在雙曲線的右支上,由雙曲線的定義,得 ,由雙曲線的幾何性質(zhì),知 , 解得 ,又 ,所以雙曲線離心率的范圍是 ,故選A.

【方法點(diǎn)晴】本題主要考查正弦定理以及利用雙曲線的簡(jiǎn)單性質(zhì)求雙曲線的離心率范圍,屬于難題.求解與雙曲線性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問(wèn)題應(yīng)先將 用有關(guān)的一些量表示出來(lái),再利用其中的一些關(guān)系構(gòu)造出關(guān)于的不等式,從而求出的范圍.焦半徑構(gòu)造出關(guān)于的不等式,最后解出的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系下,已知圓O和直線

1求圓O和直線l的直角坐標(biāo)方程;

2當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求經(jīng)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程;

(2)求以橢圓長(zhǎng)軸兩個(gè)端點(diǎn)為焦點(diǎn),以該橢圓焦點(diǎn)為頂點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)如果對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?( )

我離開(kāi)學(xué)校不久,發(fā)現(xiàn)自己把作業(yè)本忘在教室,于是立刻返回教室里取了作業(yè)本再回家;

我放學(xué)回家騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;

我放學(xué)從學(xué)校出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開(kāi)始加速.

A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的奇函數(shù).

1)求實(shí)數(shù)的值;

2)若,則不等式上有解,求實(shí)數(shù)的取值范圍;

3)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽配廠生產(chǎn)某種零件,每個(gè)零件的出廠單價(jià)為60元,為了鼓勵(lì)更多銷售商訂購(gòu),該廠決定當(dāng)一次訂購(gòu)超過(guò)100個(gè)時(shí),每多訂購(gòu)一個(gè),訂購(gòu)的全部零件的出廠單價(jià)就降低元,但實(shí)際出廠單價(jià)不低于51元.

當(dāng)一次訂購(gòu)量最少為多少時(shí),零件的實(shí)際出廠單價(jià)恰好為51元?

設(shè)一次訂購(gòu)量為x個(gè),零件的實(shí)際出廠單價(jià)為p元,寫出函數(shù)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù)”.區(qū)間為函數(shù)的一個(gè)可等域區(qū)間”.給出下列三個(gè)函數(shù):

;②;③

則其中存在唯一可等域區(qū)間可等域函數(shù)的個(gè)數(shù)是(  

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 為邊長(zhǎng)為2的等邊三角形,平面平面,四邊形為菱形, , 相交于點(diǎn).

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案