【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B﹣C)的值.

【答案】解:(Ⅰ)∵ =2,cosB= , ∴cacosB=2,即ac=6①,
∵b=3,
∴由余弦定理得:b2=a2+c2﹣2accosB,即9=a2+c2﹣4,
∴a2+c2=13②,
聯(lián)立①②得:a=3,c=2;
(Ⅱ)在△ABC中,sinB= = = ,
由正弦定理 = 得:sinC= sinB= × =
∵a=b>c,∴C為銳角,
∴cosC= = = ,
則cos(B﹣C)=cosBcosC+sinBsinC= × + × =
【解析】(Ⅰ)利用平面向量的數(shù)量積運(yùn)算法則化簡(jiǎn) =2,將cosB的值代入求出ac=6,再利用余弦定理列出關(guān)系式,將b,cosB以及ac的值代入得到a2+c2=13,聯(lián)立即可求出ac的值;(Ⅱ)由cosB的值,利用同角三角函數(shù)間基本關(guān)系求出sinB的值,由c,b,sinB,利用正弦定理求出sinC的值,進(jìn)而求出cosC的值,原式利用兩角和與差的余弦函數(shù)公式化簡(jiǎn)后,將各自的值代入計(jì)算即可求出值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線 為參數(shù))和直線 為參數(shù)).

(1)將曲線的方程化為普通方程;

(2)設(shè)直線與曲線交于兩點(diǎn),且為弦的中點(diǎn),求弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (Ⅰ)當(dāng) 時(shí),求函數(shù)f(x)的值域;
(Ⅱ)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).
(1)求m;
(2)當(dāng)a>1時(shí),若函數(shù)f(x)的圖像與直線l:y=﹣mx+n無(wú)公共點(diǎn),求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)歷法推測(cè)遵循以測(cè)為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對(duì)二十四節(jié)氣的晷影長(zhǎng)的記錄中,冬至和夏至的晷影長(zhǎng)是實(shí)測(cè)得到的,其他節(jié)氣的晷影長(zhǎng)則是按照等差數(shù)列的規(guī)律計(jì)算得出的.下表為《周髀算經(jīng)》對(duì)二十四節(jié)氣晷影長(zhǎng)的記錄,其中寸表示115寸分(1寸=10分).

節(jié)氣

冬至

小寒(大雪)

大寒(小雪)

立春(立冬)

雨水(霜降)

驚蟄(寒露)

春分(秋分)

晷影長(zhǎng)(寸)

135

75.5

節(jié)氣

清明(白露)

谷雨(處暑)

立夏(立秋)

小滿(大暑)

芒種(小暑)

夏至

晷影長(zhǎng)(寸)

16.0

已知《易知》中記錄的冬至晷影長(zhǎng)為130.0寸,夏至晷影長(zhǎng)為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長(zhǎng)應(yīng)為__________寸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 已知a1=1, =an+1 n2﹣n﹣ ,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足an﹣an1=bna ,求數(shù)列{bn}的n前項(xiàng)和Tn;
(3)是否存在實(shí)數(shù)λ,使得不等式λa +a + ≥0恒成立,若存在,求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)若函數(shù)處的切線方程為,求的值;

(II)討論方程的解的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的短軸長(zhǎng)為,右焦點(diǎn)為,點(diǎn)是橢圓上異于左、右頂點(diǎn)的一點(diǎn).

(1)求橢圓的方程;

(2)若直線與直線交于點(diǎn),線段的中點(diǎn)為,證明:點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率。

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列;

(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案