【題目】已知函數(shù).

(I)若函數(shù)處的切線方程為,求的值;

(II)討論方程的解的個數(shù),并說明理由.

【答案】(1);(2)見解析.

【解析】試題分析:(I求出 ,結(jié)合已知得到 ,據(jù)此可求出 的值;(II) ,討論求解,即可得到方程 的解的個數(shù),注意利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.

試題解析:(I)因為,

處的切線方程為,

所以,

解得.

(II)當(dāng)時, 在定義域內(nèi)恒大于,此時方程無解.

當(dāng)時, 在區(qū)間內(nèi)恒成立,

所以的定義域內(nèi)為增函數(shù).

因為,

所以方程有唯一解.

當(dāng)時, .

當(dāng)時,

在區(qū)間內(nèi)為減函數(shù),

當(dāng)時, ,

在區(qū)間內(nèi)為增函數(shù),

所以當(dāng)時,

取得最小值.

當(dāng)時, ,無方程解;

當(dāng)時, ,方程有唯一解.

當(dāng)時, ,

因為,且,

所以方程在區(qū)間內(nèi)有唯一解,

當(dāng)時,

設(shè)

所以在區(qū)間內(nèi)為增函數(shù),

,所以,即

.

因為,

所以.

所以方程在區(qū)間內(nèi)有唯一解,

所以方程在區(qū)間內(nèi)有兩解,

綜上所述,當(dāng)時,方程無解,

當(dāng),或時,方程有唯一解,

當(dāng)時,方程有兩個解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù): 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,這三天中恰有兩天下雨的概率近似為(
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2 , 若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B﹣C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若有兩個極值點,記過點的直線的斜率為,問:是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=log3x,
(1)求f(x)的解析式;
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x﹣1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a﹣c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若cosA= ,a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器和正四棱臺形玻璃容器的高均為32cm,容器的底面對角線AC的長為10cm,容器的兩底面對角線EG,E1G1的長分別為14cm和62cm. 分別在容器和容器中注入水,水深均為12cm. 現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計)

(1)將l放在容器中,l的一端置于點A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長度;

(2)將l放在容器中,l的一端置于點E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長度.

查看答案和解析>>

同步練習(xí)冊答案