【題目】設(shè)函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為,問:是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】(1)見解析(2)不存在,使得.

【解析】試題分析】(1)先對(duì)函數(shù)求導(dǎo),再運(yùn)用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系分析討論函數(shù)的符號(hào),進(jìn)而運(yùn)用分類整合思想對(duì)實(shí)數(shù)進(jìn)行分三類進(jìn)行討論并判定其單調(diào)性,求出單調(diào)區(qū)間;(2)先假設(shè)滿足題設(shè)條件的參數(shù)存在,再借助題設(shè)條件,推得,即,亦即

進(jìn)而轉(zhuǎn)化為判定函數(shù)上是單調(diào)遞增的問題,然后借助導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系運(yùn)用反證法進(jìn)行分析推證,從而作出判斷:

解:(Ⅰ) 定義域?yàn)?/span>

,

,

①當(dāng)時(shí), , ,故上單調(diào)遞增,

②當(dāng)時(shí), , 的兩根都小于零,在上,

上單調(diào)遞增,

③當(dāng)時(shí), , 的兩根為,

當(dāng)時(shí), ;當(dāng)時(shí), ;當(dāng)時(shí), ;

分別在上單調(diào)遞增,在上單調(diào)遞減.

(Ⅱ)由(Ⅰ)知, ,

因?yàn)?/span>.

所以,

又由(1)知, ,于是

若存在,使得,則,即,

亦即

再由(Ⅰ)知,函數(shù)上單調(diào)遞增,

,所以,這與()式矛盾,

故不存在,使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+(y﹣1)2=4和圓C2:(x﹣4)2+(y﹣5)2=4
(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2 ,求直線l的方程
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對(duì)互相垂直的直線l1和l2 , 它們分別與圓C1和C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若 ,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對(duì)任意 都有恒成立,求實(shí)數(shù) 的取值范圍;

(Ⅲ)設(shè)函數(shù) ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)歷法推測(cè)遵循以測(cè)為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對(duì)二十四節(jié)氣的晷影長(zhǎng)的記錄中,冬至和夏至的晷影長(zhǎng)是實(shí)測(cè)得到的,其他節(jié)氣的晷影長(zhǎng)則是按照等差數(shù)列的規(guī)律計(jì)算得出的.下表為《周髀算經(jīng)》對(duì)二十四節(jié)氣晷影長(zhǎng)的記錄,其中寸表示115寸分(1寸=10分).

節(jié)氣

冬至

小寒(大雪)

大寒(小雪)

立春(立冬)

雨水(霜降)

驚蟄(寒露)

春分(秋分)

晷影長(zhǎng)(寸)

135

75.5

節(jié)氣

清明(白露)

谷雨(處暑)

立夏(立秋)

小滿(大暑)

芒種(小暑)

夏至

晷影長(zhǎng)(寸)

16.0

已知《易知》中記錄的冬至晷影長(zhǎng)為130.0寸,夏至晷影長(zhǎng)為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長(zhǎng)應(yīng)為__________寸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,相關(guān)部門隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:

收入x(萬元)

8.2

8.6

10.0

11.3

11.9

支出y(萬元)

6.2

7.5

8.0

8.5

9.8


(1)根據(jù)上表可得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計(jì),該社區(qū)一戶年收入為15萬元的家庭年支出為多少?
(2)若從這5個(gè)家庭中隨機(jī)抽選2個(gè)家庭進(jìn)行訪談,求抽到家庭的年收入恰好一個(gè)不超過10萬元,另一個(gè)超過11萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)若函數(shù)處的切線方程為,求的值;

(II)討論方程的解的個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinθ,﹣2)與 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OPQ是半徑為1,圓心角為 的扇形,C是扇形弧上的動(dòng)點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,則矩形ABCD的面積最大是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C 上,過M作x軸的垂線,垂足為N點(diǎn)P滿足

(1) 求點(diǎn)P的軌跡方程;

(2)設(shè)點(diǎn) 在直線x=-3上,且.證明過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.

查看答案和解析>>

同步練習(xí)冊(cè)答案