【題目】已知等差數(shù)列的前n項和為,且,數(shù)列的前n項和為,且.

1)求數(shù)列,的通項公式.

2)設,數(shù)列的前n項和為,求.

3)設,求數(shù)列的前n項和.

【答案】1;23

【解析】

1)由題意結合等差數(shù)列的前n項和公式、通項公式即可求得;由間的關系可得;

2)由題意,由裂項相消法即可得解;

3)由題意將分為的兩部分,分別利用錯位相減法、裂項相消法求出其前n項和、,即可得解.

1數(shù)列為等差數(shù)列,為其前n項和,,

,∴

;

對數(shù)列,當時,,

時,,

時也滿足上式,

2)由題意

,

;

3)由題意,

,∴

設數(shù)列的前n項和為,數(shù)列的前n項和為

①,

②,

②得

,

,

n為偶數(shù)時,

;

n為奇數(shù)時,

;

由以上可知

所以數(shù)列的前n項和.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)上的兩個動點,焦點為F.線段AB的中點為,且A,B兩點到拋物線的焦點F的距離之和為8.


1)求拋物線的標準方程;

2)若線段AB的垂直平分線與x軸交于點C,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c為正實數(shù),且滿足a+b+c1.證明:

1|a|+|b+c1|;

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)絡是一種先進的高頻傳輸技術,我國的技術發(fā)展迅速,已位居世界前列.華為公司20198月初推出了一款手機,現(xiàn)調(diào)查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數(shù)據(jù).如圖所示的折線圖中,橫軸1代表20198月,2代表20199……,5代表201912月,根據(jù)數(shù)據(jù)得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)(

A.20206B.20207C.20208D.20209

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,直線的極坐標方程為

1)求曲線的普通方程和直線的直角坐標方程;

2)已知點,點為曲線上的動點,求線段的中點到直線的距離的最大值.并求此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新冠來襲,湖北告急!有一支援鄂醫(yī)療小隊由3名醫(yī)生和6名護士組成,他們?nèi)恳峙涞饺裔t(yī)院.每家醫(yī)院分到醫(yī)生1名和護士13名,其中護士甲和護士乙必須分到同一家醫(yī)院,則不同的分配方法有( )種

A.252B.540C.792D.684

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點;

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,離心率為,是平面內(nèi)兩點,滿足,線段的中點在橢圓上,周長為12

1)求橢圓的方程;

2)若過的直線與橢圓交于,,求(其中為坐標原點)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的一臺某型號機器有2種工作狀態(tài):正常狀態(tài)和故障狀態(tài).若機器處于故障狀態(tài),則停機檢修.為了檢查機器工作狀態(tài)是否正常,工廠隨機統(tǒng)計了該機器以往正常工作狀態(tài)下生產(chǎn)的1000個產(chǎn)品的質(zhì)量指標值,得出如圖1所示頻率分布直方圖.由統(tǒng)計結果可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中近似為這1000個產(chǎn)品的質(zhì)量指標值的平均數(shù),近似為這1000個產(chǎn)品的質(zhì)量指標值的方差(同一組中的數(shù)據(jù)用該組區(qū)間中點值為代表).若產(chǎn)品的質(zhì)量指標值全部在之內(nèi),就認為機器處于正常狀態(tài),否則,認為機器處于故障狀態(tài).

1)下面是檢驗員在一天內(nèi)從該機器生產(chǎn)的產(chǎn)品中隨機抽取10件測得的質(zhì)量指標值:

29 45 55 63 67 73 78 87 93 113

請判斷該機器是否出現(xiàn)故障?

2)若機器出現(xiàn)故障,有2種檢修方案可供選擇:

方案一:加急檢修,檢修公司會在當天排除故障,費用為700元;

方案二:常規(guī)檢修,檢修公司會在七天內(nèi)的任意一天來排除故障,費用為200.

現(xiàn)需決策在機器出現(xiàn)故障時,該工廠選擇何種方案進行檢修,為此搜集檢修公司對該型號機器近100單常規(guī)檢修在第i,2,7)天檢修的單數(shù),得到如圖2所示柱狀圖,將第i天常規(guī)檢修單數(shù)的頻率代替概率.已知該機器正常工作一天可收益200元,故障機器檢修當天不工作,若機器出現(xiàn)故障,該選擇哪種檢修方案?

附:,,.

查看答案和解析>>

同步練習冊答案