考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,導(dǎo)數(shù)的運算
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)f′(x)=
e--
xe-=-
(x-a)e-,分a<0、a>0兩種情況討論:a<0時由導(dǎo)數(shù)的符號可判斷f(x)在[0,1]上的單調(diào)性,由單調(diào)性可求最大值;a>0時再按照0<a<1、a≥1兩種情況討論可得單調(diào)性,從而可求最大值;
(2)x>0,2f′(-ax)>g(x)恒成立,即2(x+1)e
x>(x+1)(kx-15)恒成立,亦即2e
x>kx-15恒成立,設(shè)h(x)=2e
x-kx+15,則問題轉(zhuǎn)化為:當(dāng)x>0時,h(x)>0(*)恒成立,利用導(dǎo)數(shù)可求h(x)
min,從而有(*)式?h(x)
min=h(ln
)=k-kln
+15>0,再令φ(x)=x-xln
+15(x>0),利用導(dǎo)數(shù)可判斷φ(x)的單調(diào)性,再由零點存在定理可判斷φ(x)的零點存在區(qū)間,根據(jù)函數(shù)φ(x)的符號即可求得結(jié)果;
解答:
解:(1)f(x)的定義域為R,f′(x)=
e--
xe-=-
(x-a)e-,
①當(dāng)a<0時,-
>0,由f′(x)>0得x>a,f(x)在(a,+∞)上單調(diào)遞增,
∴f(x)在[0,1]上單調(diào)遞增,此時,f(x)
max=f(1)=
e-.
②當(dāng)a>0時,-
<0,由f′(x)>0得x<a;由f′(x)<0得x>a,
∴f(x)在(-∞,a)上單調(diào)遞增,在(a,+∞)上單調(diào)遞減;
當(dāng)0<a<1時,f(x)在[0,a]上單調(diào)遞增,在[a,1]上單調(diào)遞減,
∴f(x)
max=f(a)=ae
-1;
當(dāng)a≥1時,f(x)在[0,1]上單調(diào)遞增,∴f(x)
max=f(1)=
e-.
綜上所述,
f(x)max=.
(2)由題設(shè),g(x)=kx
2+(k-15)x-15=(x+1)(kx-15),
f′(x)=
e--
xe-=(1-
x)
e-,
∵x>0,2f′(-ax)>g(x)恒成立,即2(x+1)e
x>(x+1)(kx-15)恒成立,
∴當(dāng)x>0時,2e
x>kx-15恒成立,
設(shè)h(x)=2e
x-kx+15,則問題轉(zhuǎn)化為:當(dāng)x>0時,h(x)>0(*)恒成立,
∵h(yuǎn)′(x)=2e
x-k,∴h(x)在(0,ln
)上單調(diào)遞減,在(ln
,+∞)上單調(diào)遞增,
故(*)式?h(x)
min=h(ln
)=k-kln
+15>0,
設(shè)φ(x)=x-xln
+15(x>0),
則φ′(x)=1-lnx-1+ln2=-lnx+ln2,
故φ(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減,
而φ(2e
2)=2e
2-2e
2lne
2+15=-2e
2+15>0,
φ(15)=15-15ln
+15=15(lne
2-ln
)<0,
故存在x
0∈(2e
2,15),使得φ(x
0)=0,且當(dāng)x∈[2,x
0)時φ(x)>0,當(dāng)x∈(x
0,+∞)時φ(x)<0,
又φ(x)在(0,2)上單調(diào)遞增,φ(1)=16-ln
>0,14<2e
2<15,
故所求正整數(shù)k的最大值為14.
點評:該題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,考查函數(shù)恒成立問題,考查轉(zhuǎn)化思想、分類討論思想,根據(jù)題目靈活構(gòu)造函數(shù)是解題關(guān)鍵,注意運用.