【題目】下列說法:
①整數(shù)集可以表示為{x|x為全體整數(shù)}或{ };
②方程組 的解集為 {x=3,y=1};
③集合{x∈N|x2=1}用列舉法可表示為{1,1};
④集合 是無限集.
其中正確的是 ( )
A.①和③
B.②和④
C.④
D.①③④
【答案】C
【解析】①表示集合的符號“{ }”已包含“所有” “全體”等含義,而符號“ ”已表示整數(shù)集,其正確的表示應(yīng)為{x|x為整數(shù)}或 ;
②方程組 的解是有序的實數(shù)對 而集合{x=3,y=1}的元素為兩個方程,正確的表示應(yīng)為{(3,1)},或 ;
③由x2=1,得x=1或x=1,而1 N,故集合{x∈N|x2=1}={1};
④集合 中有無限個實數(shù),所以是無限集.故正確的只有④.
故答案為:C.
①表示集合的符號“{ }”已包含“所有” “全體”等含義,故錯誤;
②方程組的解是有序的實數(shù)對,而集合{x=3,y=1}的元素為兩個方程,故錯誤;
③中1 N,故錯誤;
④集合 { x | 0 < x < 0.001 } 中有無限個實數(shù),故正確.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題“非空集合 中的元素都是集合 中的元素”是假命題,
那么下列命題中真命題的個數(shù)為( )
① 中的元素都不是 中的元素 ② 中有不屬于 的元素
③ 中有屬于 的元素 ④ 中的元素不都是 中的元素
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)x滿足|x﹣1|>a其中a>0;命題q:實數(shù)x滿足 <1
(1)若命題p中a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 + =1與x軸交于A、B兩點(diǎn),過橢圓上一點(diǎn)P(x0 , y0)(P不與A、B重合)的切線l的方程為 + =1,過點(diǎn)A、B且垂直于x軸的垂線分別與l交于C、D兩點(diǎn),設(shè)CB、AD交于點(diǎn)Q,則點(diǎn)Q的軌跡方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2=4,直線l:y+x﹣t=0,P為直線l上一動點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線l交圓C于A、B兩點(diǎn),且∠AOB= ,求實數(shù)t的值;
(2)若t=4,過點(diǎn)P做圓的切線,切點(diǎn)為T,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(1,2,-1),B(2,0,2).
(1)在x軸上求一點(diǎn)P,使|PA|=|PB|;
(2)若xOz平面內(nèi)的點(diǎn)M到點(diǎn)A的距離與到點(diǎn)B的距離相等,求點(diǎn)M的坐標(biāo)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 的定義域為 ,值域為 ,如果存在函數(shù) ,使得函數(shù) 的值域仍是 ,那么稱 是函數(shù) 的一個等值域變換.
(1)判斷下列函數(shù) 是不是函數(shù) 的一個等值域變換?說明你的理由;
① ;
② .
(2)設(shè) 的定義域為 ,已知 是 的一個等值域變換,且函數(shù) 的定義域為 ,求實數(shù) 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com