【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點(diǎn).

(Ⅰ)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若,求的值.

【答案】(1) (2) 的值為1

【解析】試題分析:(1利用直角方程與極坐標(biāo)方程的互化公式即可把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,消去參數(shù)t就可得到直線l的普通方程;(2將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,利用參數(shù)的幾何意義即可求出 ,從而建立關(guān)于a的一元二次方程,求出a的值。

試題解析(1)由

∴曲線的直角坐標(biāo)方程為,直線的普通方程為

2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程中,

設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為

則有 ,

,解之得: 或者(舍去),∴的值為1。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國(guó)PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均在35微克/立方米以下空氣質(zhì)量為一級(jí),在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級(jí),在75微克/立方米以上空氣質(zhì)量為超標(biāo).北方某市環(huán)保局從2015年全年每天的PM2.5監(jiān)測(cè)數(shù)據(jù)中隨機(jī)抽取15天的數(shù)據(jù)作為樣本,監(jiān)測(cè)值如下圖所示(十位為莖,個(gè)位為葉).

(1)15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示其中空氣質(zhì)量達(dá)到一級(jí)的天數(shù),求的分布列;

(2)以這15天的PM2.5日均值來估計(jì)一年的空氣質(zhì)量情況,則一年(按360天計(jì)算)中大約有多少天的空氣質(zhì)量達(dá)到一級(jí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的焦點(diǎn)是橢圓的頂點(diǎn), 為橢圓的左焦點(diǎn)且橢圓經(jīng)過點(diǎn).

1)求橢圓的方程

2)過橢圓的右頂點(diǎn)作斜率為的直線交橢圓于另一點(diǎn),連結(jié)并延長(zhǎng)交橢圓于點(diǎn),當(dāng)的面積取得最大值時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值,其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 為等邊三角形,平面平面 , , , 的中點(diǎn)

)求證:

)求二面角的余弦值

平面,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)準(zhǔn)備推出一種花卉植物用于美化城市環(huán)境,為評(píng)估花卉的生長(zhǎng)水平,現(xiàn)對(duì)該花卉植株的高度(單位:厘米)進(jìn)行抽查,所得數(shù)據(jù)分組為,據(jù)此制作的頻率分布直方圖如圖所示.

1)求出直方圖中的值;

2利用直方圖估算花卉植株高度的中位數(shù);

3若樣本容量為32,現(xiàn)準(zhǔn)備從高度在的植株中繼續(xù)抽取2顆做進(jìn)一步調(diào)查,求抽取植株來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,上頂點(diǎn)為為坐標(biāo)原點(diǎn),橢圓的離心率的面積為.

(1)求橢圓的方程;

(2)設(shè)線段的中點(diǎn)為,經(jīng)過的直線與橢圓交于兩點(diǎn), ,若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)在直線上,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,直線過點(diǎn),且與拋物線交于,兩點(diǎn).

(1)求拋物線的方程及點(diǎn)的坐標(biāo);

(2)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),又恰為 的零點(diǎn).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證

查看答案和解析>>

同步練習(xí)冊(cè)答案