【題目】國(guó)際上通常用年齡中位數(shù)指標(biāo)作為劃分國(guó)家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為“年輕型”人口;年齡中位數(shù)在20~30歲為“成年型”人口;年齡中位數(shù)在30歲以上為“老齡型”人口.
如圖反映了我國(guó)全面放開(kāi)二孩政策對(duì)我國(guó)人口年齡中位數(shù)的影響.據(jù)此,對(duì)我國(guó)人口年齡構(gòu)成的類(lèi)型做出如下判斷:①建國(guó)以來(lái)直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開(kāi)二孩政策之后我國(guó)仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
【答案】A
【解析】
根據(jù)折線(xiàn)統(tǒng)計(jì)圖即可判斷.
①建國(guó)以來(lái)有一段時(shí)間年齡中位數(shù)低于20,為年輕型人口,所以①錯(cuò)誤;
②從2010年至2020年年齡中位數(shù)在30歲以上,為“老齡型”人口,正確,
③放開(kāi)二孩政策之后我國(guó)年齡中位數(shù)在30歲以上,仍為“老齡型”人口,正確,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年初,由于疫情影響,開(kāi)學(xué)延遲,為了不影響學(xué)生的學(xué)習(xí),國(guó)務(wù)院、省市區(qū)教育行政部門(mén)倡導(dǎo)各校開(kāi)展“停學(xué)不停課、停學(xué)不停教”,某校語(yǔ)文學(xué)科安排學(xué)生學(xué)習(xí)內(nèi)容包含老師推送文本資料學(xué)習(xí)和視頻資料學(xué)習(xí)兩類(lèi),且這兩類(lèi)學(xué)習(xí)互不影響已知其積分規(guī)則如下:每閱讀一篇文本資料積1分,每日上限積5分;觀(guān)看視頻1個(gè)積2分,每日上限積6分.經(jīng)過(guò)抽樣統(tǒng)計(jì)發(fā)現(xiàn),文本資料學(xué)習(xí)積分的概率分布表如表1所示,視頻資料學(xué)習(xí)積分的概率分布表如表2所示.
(1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;
(2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)E的極坐標(biāo)方程為,直線(xiàn)l的參數(shù)方程為(t為參數(shù)).點(diǎn)P為曲線(xiàn)E上的動(dòng)點(diǎn),點(diǎn)Q為線(xiàn)段OP的中點(diǎn).
(1)求點(diǎn)Q的軌跡(曲線(xiàn)C)的直角坐標(biāo)方程;
(2)若直線(xiàn)l交曲線(xiàn)C于A,B兩點(diǎn),點(diǎn)恰好為線(xiàn)段AB的三等分點(diǎn),求直線(xiàn)l的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的公差為,前n項(xiàng)和為,且滿(mǎn)足____________.(從①);②成等比數(shù)列;③,這三個(gè)條件中任選兩個(gè)補(bǔ)充到題干中的橫線(xiàn)位置,并根據(jù)你的選擇解決問(wèn)題)
(I)求;
(Ⅱ)若,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)上任意一點(diǎn)(異于頂點(diǎn))與雙曲線(xiàn)兩頂點(diǎn)連線(xiàn)的斜率之積為.
(I)求雙曲線(xiàn)漸近線(xiàn)的方程;
(Ⅱ)過(guò)橢圓上任意一點(diǎn)P(P不在C的漸近線(xiàn)上)分別作平行于雙曲線(xiàn)兩條漸近線(xiàn)的直線(xiàn),交兩漸近線(xiàn)于兩點(diǎn),且,是否存在使得該橢圓的離心率為,若存在,求出橢圓方程:若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,A為C的上頂點(diǎn),過(guò)A的直線(xiàn)l與C交于另一點(diǎn)B,與x軸交于點(diǎn)D,O點(diǎn)為坐標(biāo)原點(diǎn).
(1)若,求l的方程;
(2)已知P為AB的中點(diǎn),y軸上是否存在定點(diǎn)Q,使得?若存在,求Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDE中,DE∥AB,AC⊥BC,BC=2AC=2,AB=2DE,且D點(diǎn)在平面ABC內(nèi)的正投影為AC的中點(diǎn)H且DH=1.
(1)證明:面BCE⊥面ABC
(2)求BD與面CDE夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)C的極坐標(biāo)方程;
(2)過(guò)點(diǎn),傾斜角為的直線(xiàn)l與曲線(xiàn)C相交于M,N兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系內(nèi),點(diǎn) 在曲線(xiàn):,(為參數(shù),)上運(yùn)動(dòng),以為極軸建立極坐標(biāo)系.直線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)寫(xiě)出曲線(xiàn)的標(biāo)準(zhǔn)方程和直線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)若直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),點(diǎn)在曲線(xiàn)上移動(dòng),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com