【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:

(1)根據(jù)箱產(chǎn)量的頻率分布直方圖填寫下面列聯(lián)表,從等高條形圖中判斷箱產(chǎn)量是否與新、舊網(wǎng)箱養(yǎng)殖方法有關(guān);

(2)根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

參考公式:

(1)給定臨界值表

P(K)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(2)其中為樣本容量.

【答案】(1)表格見解析,有關(guān); (2)有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).

【解析】

1)從頻率分布直方圖中找出相應(yīng)數(shù)據(jù)完善表格,畫出等高條形圖,做出判斷即可;(2)由聯(lián)表中數(shù)據(jù),計(jì)算出,結(jié)合臨界值表做出判斷.

(1)列聯(lián)表如下:

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

合計(jì)

舊養(yǎng)殖法

62

38

100

新養(yǎng)殖法

34

66

100

合計(jì)

96

104

200

由等高條形圖可知新養(yǎng)殖法箱產(chǎn)量≥50kg占66%,而舊養(yǎng)殖法箱產(chǎn)量≥50kg才占38%,有比較明顯的差別,所以箱產(chǎn)量與新、舊網(wǎng)箱養(yǎng)殖方法有關(guān).

(2)由列聯(lián)表中的數(shù)據(jù)計(jì)算可得的觀測(cè)值為

,

故有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(1)若,求函數(shù)在處的切線方程;

(2)討論的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地舉辦科技博覽會(huì),有個(gè)場(chǎng)館,現(xiàn)將個(gè)志愿者名額分配給這個(gè)場(chǎng)館,要求每個(gè)場(chǎng)館至少有一個(gè)名額且各場(chǎng)館名額互不相同的分配方法共有( )種

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,兩點(diǎn),滿足:,,,則的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)在區(qū)間上的最大值是最小值是

A. 有關(guān),且與有關(guān) B. 有關(guān),但與無關(guān)

C. 無關(guān),且與無關(guān) D. 無關(guān),但與有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某運(yùn)動(dòng)員從A市出發(fā)沿海岸一條筆直公路以每小時(shí)15km的速度向東進(jìn)行長(zhǎng)跑訓(xùn)練,長(zhǎng)跑開始時(shí),在A市南偏東方向距A75km,且與海岸距離為45km的海上B處有一艘劃艇與運(yùn)動(dòng)員同時(shí)出發(fā),要追上這位運(yùn)動(dòng)員.

1)劃艇至少以多大的速度行駛才能追上這位運(yùn)動(dòng)員?

2)求劃艇以最小速度行駛時(shí)的行駛方向與所成的角.

3)若劃艇每小時(shí)最快行駛11.25km,劃艇全速行駛,應(yīng)沿何種路線行駛才能盡快追上這名運(yùn)動(dòng)員,最快需多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中, , 的中點(diǎn), 的中點(diǎn).將沿折起到,使得平面平面(如圖).

圖1 圖2

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知圓Cx2+y2-4x=0及點(diǎn)A-10),B12

1)若直線l平行于AB,與圓C相交于M,N兩點(diǎn),MN=AB,求直線l的方程;

2)若圓C上存在兩個(gè)點(diǎn)P,使得PA2+PB2=aa4),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,

(I)求,的值,由此猜想數(shù)列的通項(xiàng)公式:

(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案