【題目】如圖,在平面直角坐標(biāo)系xOy中,已知圓Cx2+y2-4x=0及點(diǎn)A-1,0),B1,2

1)若直線l平行于AB,與圓C相交于M,N兩點(diǎn),MN=AB,求直線l的方程;

2)若圓C上存在兩個(gè)點(diǎn)P,使得PA2+PB2=aa4),求a的取值范圍.

【答案】1x-y=0x-y-4=0;(2)(22-822+8

【解析】

(1)由題得直線AB方程為x-y+1=0, 設(shè)直線l的方程為x-y+m=0,由r2=2+2,解得m=0-4,即得直線l的方程為x-y=0x-y-4=0;(2)設(shè)Px,y),由題得x2+y-12=-2,即得P的軌跡是以(01)為圓心,為半徑的圓,由兩圓相交可得-2+2,解不等式即得a的取值范圍.

解:(1)根據(jù)題意,圓C的標(biāo)準(zhǔn)方程為(x-22+y2=4

所以圓心C2,0),半徑為2

因?yàn)?/span>lAB,A-1,0),B12),直線AB的方程為x-y+1=0,且|AB|==2,

設(shè)直線l的方程為x-y+m=0

又由MN=AB=2,圓心C到直線l的距離d=

則有r2=2+2,即(2=2,解可得m=0-4,

故直線l的方程為x-y=0x-y-4=0;

2)根據(jù)題意,設(shè)Px,y),

PA2+PB2=a,則PA2+PB2=x+12+y-02+x-12+y-22=a,

變形可得:x2+y2-2y+3=,即x2+y-12=-2

P的軌跡是以(0,1)為圓心,為半徑的圓;

若圓C上存在兩個(gè)點(diǎn)P,使得PA2+PB2=a,則圓C與圓x2+y-12=4相交,

兩圓的圓心距d′==,

則有-2+2,

解可得:22-8a22+8

a的取值范圍為(22-8,22+8).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,已知AB,AB6.AB邊上取點(diǎn)E,使得BE1,連接EC,ED.若∠CEDEC.

(1)sinBCE的值;

(2)CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:

(1)根據(jù)箱產(chǎn)量的頻率分布直方圖填寫下面列聯(lián)表,從等高條形圖中判斷箱產(chǎn)量是否與新、舊網(wǎng)箱養(yǎng)殖方法有關(guān);

(2)根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān)?

箱產(chǎn)量<50kg

箱產(chǎn)量≥50kg

舊養(yǎng)殖法

新養(yǎng)殖法

參考公式:

(1)給定臨界值表

P(K)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(2)其中為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過坐標(biāo)原點(diǎn)且與直線的斜率互為相反數(shù).若直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線軸所成的銳角為,直線軸所成的銳角為,判斷的大小關(guān)系并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C.

1)求經(jīng)過點(diǎn)且與圓C相切的直線方程;

2)設(shè)直線與圓C相交于AB兩點(diǎn),,求實(shí)數(shù)n的值;

3)若點(diǎn)在以為圓心,以1為半徑的圓上,距離為4的兩點(diǎn)PQ在圓C上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 的左右焦點(diǎn)分別為, ,左右頂點(diǎn)分別為 , 為橢圓上的動(dòng)點(diǎn)(不與, 重合),且直線的斜率的乘積為

(1)求橢圓的方程;

(2)過作兩條互相垂直的直線(均不與軸重合)分別與橢圓交于 , 四點(diǎn),線段的中點(diǎn)分別為、,求證:直線過定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某省各景點(diǎn)在大眾中的熟知度,隨機(jī)對15~65歲的人群抽樣了人,回答問題“某省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如下圖表

組號(hào)

分組

回答正確

的人數(shù)

回答正確的人數(shù)

占本組的頻率

第1組

[15,25)

0.5

第2組

[25,35)

18

第3組

[35,45)

0.9

第4組

[45,55)

9

0.36

第5組

[55,65]

3

(1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?

(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒有第3組人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)其中

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有兩個(gè)零點(diǎn),

(i)的取值范圍;

(ii)設(shè)的兩個(gè)零點(diǎn)分別為x1,x2,證明:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1:x2+y2=b2與橢圓C2:=1(a>b>0),若在橢圓C2上存在一點(diǎn)P,使得由點(diǎn)P所作的圓C1的兩條切線互相垂直,則橢圓C2的離心率的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案