【題目】已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)證明:f(x)為單調(diào)遞減函數(shù).
(2)若f(3)=-1,求f(x)在[2,9]上的最小值.
【答案】(1)見解析(2)-2
【解析】
(1)任取任取x1,x2∈(0,+∞),且x1>x2,進而可得>1,接下來結(jié)合已知即可確定與的大小關系,從而證得結(jié)果;
(2)由(1)的結(jié)論可知的最小值是,接下來結(jié)合已知可得,據(jù)此即可求得的值,得到結(jié)果.
解:(1)證明:任取x1,x2∈(0,+∞),且x1>x2,
則>1,由于當x>1時,f(x)<0,
所以f<0,即f(x1)-f(x2)<0,
因此f(x1)<f(x2),
所以函數(shù)f(x)在區(qū)間(0,+∞)上是單調(diào)遞減函數(shù).
(2)因為f(x)在(0,+∞)上是單調(diào)遞減函數(shù),
所以f(x)在[2,9]上的最小值為f(9).
由f=f(x1)-f(x2)得,
f=f(9)-f(3),而f(3)=-1,
所以f(9)=-2.
所以f(x)在[2,9]上的最小值為-2.
科目:高中數(shù)學 來源: 題型:
【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市出臺了相關政策:由政府協(xié)調(diào),企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.某大學畢業(yè)生按照相關政策投資銷售一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月的銷售量y(單位:件)與銷售單價x(單位:元)之間的關系近似滿足一次函數(shù):.
(1)設他每月獲得的利潤為w(單位:元),寫出他每月獲得的利潤w與銷售單價x的函數(shù)關系.
(2)相關部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果他想要每月獲得的利潤不少于3000元,那么政府每個月為他承擔的總差價的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知偶函數(shù)滿足且,當時,,關于的不等式在上有且只有200個整數(shù)解,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , ,
,點在線段上,且, , 平面.
(1)求證:平面平面;
(2)當四棱錐的體積最大時,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線經(jīng)過橢圓: 的左頂點和上頂點,橢圓的右頂點為,點是橢圓上位于軸上方的動點,直線與直線分別交于兩點。
(1)求橢圓方程;
(2)求線段的長度的最小值;
(3)當線段的長度最小時,在橢圓上有兩點,使得,的面積都為,求直線在y軸上的截距。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)使得函數(shù)在定義域內(nèi)為增函數(shù);實數(shù)使得函數(shù)在上存在兩個零點,且
分別求出條件中的實數(shù)的取值范圍;
甲同學認為“是的充分條件”,乙同學認為“是的必要條件”,請判斷兩位同學的說法是否正確,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年6月湖北潛江將舉辦第六屆“中國湖北(潛江)龍蝦節(jié)”,為了解不同年齡的人對“中國湖北(潛江)龍蝦節(jié)”的關注程度,某機構(gòu)隨機抽取了年齡在20—70歲之間的100人進行調(diào)查,經(jīng)統(tǒng)計“年輕人”與“中老年人”的人數(shù)之比為。
關注 | 不關注 | 合計 | |
年輕人 | 30 | ||
中老年人 | |||
合計 | 50 | 50 | 100 |
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有99﹪的把握認為關注“中國湖北(潛江)龍蝦節(jié)”是否和年齡有關?
(2)現(xiàn)已經(jīng)用分層抽樣的辦法從中老年人中選取了6人進行問卷調(diào)查,若再從這6人中選取3人進行面對面詢問,記選取的3人中關注“中國湖北(潛江)龍蝦節(jié)”的人數(shù)為隨機變量,求的分布列及數(shù)學期望。
附:參考公式其中。
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),為偶函數(shù),且(e是自然對數(shù)的底數(shù)).
(1)分別求出和的解析式;
(2)記,請判斷的奇偶性和單調(diào)性,并分別說明理由;
(3)若存在,使得不等式能成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com