【題目】已知函數(shù)是奇函數(shù),為偶函數(shù),且(e是自然對數(shù)的底數(shù)).
(1)分別求出和的解析式;
(2)記,請判斷的奇偶性和單調性,并分別說明理由;
(3)若存在,使得不等式能成立,求實數(shù)m的取值范圍.
【答案】(1),;(2)增函數(shù),減函數(shù),理由見解析;(3)
【解析】
(1)由得,聯(lián)立解方程組即可;
(2)代入化簡得出得出函數(shù)的解析式,分離常數(shù),根據(jù)定義與性質得出函數(shù)的奇偶性與單調性;
(3)利用奇偶性與單調性得不等式,利用整體思想、借助二次函數(shù)的性質即可得出結論.
(1)函數(shù)是奇函數(shù),為偶函數(shù),
且①
即:②
由①②得,
(2)由(1)知,,
是減函數(shù),所以是R上的增函數(shù),
因為,所以是奇函數(shù);
(3)由不等式得,
因為是奇函數(shù),所以,
又因為是R上的增函數(shù),所以,
所以存在使成立,
設,
則,
因為所以
所以時有最大值6,
所以,
即m的范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足=f(x1)-f(x2),且當x>1時,f(x)<0.
(1)證明:f(x)為單調遞減函數(shù).
(2)若f(3)=-1,求f(x)在[2,9]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了保證食品的安全衛(wèi)生,食品監(jiān)督管理部門對某食品廠生產(chǎn)甲、乙兩種食品進行了檢測調研,檢測某種有害微量元素的含量,隨機在兩種食品中各抽取了10個批次的食品,每個批次各隨機地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).規(guī)定:當食品中的有害微量元素的含量在時為一等品,在為二等品,20以上為劣質品.
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個數(shù)據(jù),再分別從這5個數(shù)據(jù)中各選取2個,求抽到食品甲包含劣質品的概率和抽到食品乙全是一等品的概率;
(2)在概率和統(tǒng)計學中,數(shù)學期望(或均值)是基本的統(tǒng)計概念,它反映隨機變量取值的平均水平.變量的一切可能的取值與對應的概率乘積之和稱為該變量的數(shù)學期望,記為.
參考公式:變量的取值為,對應取值的概率,可理解為數(shù)據(jù)出現(xiàn)的頻率,
.
①每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質品虧損20元,根據(jù)上表統(tǒng)計得到甲、乙兩種食品為一等品、二等品、劣質品的頻率,分別估計這兩種食品為一等品、 二等品、劣質品的概率,若分別從甲、乙食品中各抽取1件,求這兩件食品各自能給該廠 帶來的盈利期望.
②若生產(chǎn)食品甲初期需要一次性投入10萬元,生產(chǎn)食品乙初期需要一次性投人16 萬元,但是以目前企業(yè)的狀況,甲乙兩條生產(chǎn)線只能投資其中一條.如果你是該食品廠負責人,以一年為期限,盈利為參照,請給出合理的投資方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 且是奇函數(shù).
(1)求實數(shù)的值;
(2)若,對任意都有恒成立,求實數(shù)的取值范圍;
(3)設 且,若,是否存在實數(shù)使函數(shù)在上的最大值為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)證明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),過原點的兩條直線分別與曲線交于異于原點的、兩點,且,其中的傾斜角為.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求和的極坐標方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的一個焦點與拋物線y2=-4x的焦點相同,且橢圓C上一點與橢圓C的左,右焦點F1,F2構成的三角形的周長為.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C交于A,B兩點,O為坐標原點,△AOB的重心G滿足: ,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com