(本題滿分10分)已知定義在R上的函數(shù)
(1)判斷函數(shù)的奇偶性
(2)證明上是減函數(shù)
(3)若方程上有解,求的取值范圍?
解:(1) 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185533065270.gif" style="vertical-align:middle;" />定義域?yàn)镽,且,所以函數(shù)為偶函數(shù)----------------------------3分
(2)證明

所以在(0,1)上是減函數(shù) 。
(用求導(dǎo)做同樣給分)-------6分
(3) 當(dāng)時(shí),函數(shù)單調(diào)遞減,
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185533065270.gif" style="vertical-align:middle;" />是偶函數(shù),所以當(dāng)時(shí), 
所以當(dāng)時(shí),方程在(-1,1)上有解。------10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分
(文)已知函數(shù)f(x)=x3-x
(I)求曲線y=f(x)在點(diǎn)M(t,f(t))處的切線方程
(II)設(shè)常數(shù)a>0,如果過(guò)點(diǎn)P(a,m)可作曲線y= f(x)的三條切線,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是導(dǎo)函數(shù)的圖象,在標(biāo)記的點(diǎn)中,函數(shù)有極小值的是 (      )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823185518338410.gif" style="vertical-align:middle;" />,且。設(shè)點(diǎn)P是函數(shù)
圖像上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線和y軸的垂線,垂足分別為M、N.
(1)求的值;
(2)問(wèn):是否為定值?若是,則求出該定值,若不是則說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù)
(Ⅰ)求的值;(Ⅱ)求的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)f(x)是一個(gè)三次函數(shù),f′(x)為其導(dǎo)函數(shù),如圖所示的是yx·f′(x)的圖象的一部分,則f(x)的極大值與極小值分別是
A.f(1)與f(-1)B.f(-1)與f(1)C.f(-2)與f(2) D.f(2)與f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的圖象在點(diǎn)()處的切線方程是,則的值是
A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線在點(diǎn)P(1,12)處的切線與軸交點(diǎn)的橫坐標(biāo)是(   )
A.-9B.-3C.9D.15

查看答案和解析>>

同步練習(xí)冊(cè)答案