【題目】

已知中心在原點(diǎn),頂點(diǎn)A1A2x軸上,其漸近線方程是,雙曲線過點(diǎn)

(1)求雙曲線方程

(2)動(dòng)直線經(jīng)過的重心G,與雙曲線交于不同的兩點(diǎn)M、N,問:是否存在直線,使G平分線段MN,證明你的結(jié)論

【答案】(1)所求雙曲線方程為="1"

(2)所求直線不存在.

【解析】

本試題主要是考查了雙曲線方程的求解,已知直線與雙曲線的位置關(guān)系的綜合運(yùn)用.

1)利用已知中的漸近線方程是,雙曲線過點(diǎn)

那么設(shè)出雙曲線的標(biāo)準(zhǔn)方程,然后代入點(diǎn)和a,b的關(guān)系得到求解.

2)假設(shè)存在直線,使G(2,2)平分線段MN,那么利用對(duì)稱性,分別設(shè)出點(diǎn)的坐標(biāo),那么聯(lián)立方程組,可知斜率,得到直線的方程,從而驗(yàn)證是否存在.

(1)如圖,設(shè)雙曲線方程為=1 …………1

由已知得………………………………………3

解得…………………………………………………5

所以所求雙曲線方程為="1" ……………………6

(2)P、A1A2的坐標(biāo)依次為(6,6)、(3,0)、(3,0),

其重心G的坐標(biāo)為(2,2…………………………………………………………8

假設(shè)存在直線,使G(22)平分線段MN,

設(shè)M(x1,y1),N(x2,y2) 則有

,kl=……………………10

l的方程為y=(x2)+2,12

,消去y,整理得x24x+28="0"

Δ=164×280,∴所求直線不存在…………………………………………14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機(jī)問卷50名使用者,然后根據(jù)這50名的問卷評(píng)分?jǐn)?shù)據(jù),統(tǒng)計(jì)得到如圖所示的頻率布直方圖,其統(tǒng)計(jì)數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(1)求頻率分布直方圖中a的值;

(2)求這50名問卷評(píng)分?jǐn)?shù)據(jù)的中位數(shù);

(3)從評(píng)分在[4060)的問卷者中,隨機(jī)抽取2人,求此2人評(píng)分都在[50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為,,焦距為6.

(1)求橢圓的方程.

(2)過橢圓左頂點(diǎn)的兩條斜率之積為的直線分別與橢圓交于點(diǎn).試問直線是否過某定點(diǎn)?若過,求出該點(diǎn)的坐標(biāo);若不過,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

時(shí),求函數(shù)的單調(diào)區(qū)間;

,則當(dāng)時(shí),記的最小值為M,的最大值為N,判斷MN的大小關(guān)系,并寫出判斷過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列滿足:,

1)求數(shù)列的通項(xiàng)公式;

2)是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,分別是上的點(diǎn),且,將沿折起到的位置,使,如圖2

1)求證:平面;

2)若的中點(diǎn),求與平面所成角的大;

3)線段上是否存在點(diǎn),使平面與平面垂直?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汕頭某家電企業(yè)要將剛剛生產(chǎn)的100臺(tái)變頻空調(diào)送往市內(nèi)某商場(chǎng),現(xiàn)有4輛甲型貨車和8輛乙型貨車可供調(diào)配,每輛甲型貨車的運(yùn)輸費(fèi)用是400元,可裝空調(diào)20臺(tái),每輛乙型貨車的運(yùn)輸費(fèi)用是300元,可裝空調(diào)10臺(tái),若每輛車至多運(yùn)一次,則企業(yè)所花的最少運(yùn)費(fèi)為(

A. 2000B. 2200C. 2400D. 2800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率 ,直線 被以橢圓 的短軸為直徑的圓截得的弦長(zhǎng)為 .

(1)求橢圓 的方程;

(2)過點(diǎn) 的直線 交橢圓于 , 兩個(gè)不同的點(diǎn),且 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:,當(dāng)',時(shí), (其中表示,,…,中的最大項(xiàng)),有以下結(jié)論:

若數(shù)列是常數(shù)列,則

若數(shù)列是公差的等差數(shù)列,則

若數(shù)列是公比為的等比數(shù)列,則

若存在正整數(shù),對(duì)任意,都有,則,是數(shù)列的最大項(xiàng).

其中正確結(jié)論的序號(hào)是____(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案