【題目】設(shè)為坐標(biāo)原點(diǎn),上有兩點(diǎn)滿足關(guān)于直線軸對(duì)稱.

(1)求的值;

(2)若,求線段的長(zhǎng)及其中點(diǎn)坐標(biāo).

【答案】(1) ;(2) ,.

【解析】試題分析:把圓的方程配方化為標(biāo)準(zhǔn)方程得出圓心和和半徑,圓上有兩點(diǎn)關(guān)于直線對(duì)稱,說(shuō)明直線過(guò)圓心,求出m的值;設(shè)而不求,設(shè)出直線PQ的方程,聯(lián)立方程組,代入后得出一元二次方程,利用根與洗漱關(guān)系求出,利用直線方程求出,由于OP與OQ垂直,數(shù)量積為0,列出方程求出參數(shù),利中點(diǎn)公式求出中點(diǎn)坐標(biāo),并求出弦長(zhǎng).

試題解析:

(1)⊙可化為

所以曲線為以為圓心, 為半徑的圓,

由已知,直線過(guò)圓心,所以,

解之得.

2)方法一:設(shè)的中點(diǎn)為,連結(jié),則

且點(diǎn)必在(1)中所求直線上,即

①②解得:

的長(zhǎng)度為,中點(diǎn)坐標(biāo)為.

方法二:設(shè)

聯(lián)立方程組

設(shè),則有

,所以,即,

代入上式得,所以

所以直線的方程為:

解得中點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共個(gè),生產(chǎn)一個(gè)衛(wèi)兵需分鐘,生產(chǎn)一個(gè)騎兵需分鐘,生產(chǎn)一個(gè)傘兵需分鐘,已知總生產(chǎn)時(shí)間不超過(guò)小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)元.

(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)表示每天的利潤(rùn)(元);

(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市兩所高中分別組織部分學(xué)生參加了“七五普法網(wǎng)絡(luò)知識(shí)大賽”,現(xiàn)從這兩所學(xué)校的參賽學(xué)生中分別隨機(jī)抽取30名學(xué)生的成績(jī)(百分制)作為樣本,得到樣本數(shù)據(jù)的莖葉圖如圖所示.

(Ⅰ)若乙校每位學(xué)生被抽取的概率為0.15,求乙校參賽學(xué)生總?cè)藬?shù);

(Ⅱ)根據(jù)莖葉圖,從平均水平與波動(dòng)情況兩個(gè)方面分析甲、乙兩校參賽學(xué)生成績(jī)(不要求計(jì)算);

(Ⅲ)從樣本成績(jī)低于60分的學(xué)生中隨機(jī)抽取3人,求3人不在同一學(xué)校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究所計(jì)劃利用神七宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用、和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排.通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如下表:


產(chǎn)品A()

產(chǎn)品B()


研制成本、搭載費(fèi)用之和(萬(wàn)元)

20

30

計(jì)劃最大資金額300萬(wàn)元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計(jì)收益(萬(wàn)元)

80

60


如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是等差數(shù)列的前項(xiàng)和,已知, , .

1)求;

2若數(shù)列求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算
(1)(lg2)2+lg2lg50+lg25;
(2)(2 +0.12+( +2π0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x2﹣1)=loga (a>0且a≠1)
(1)求函數(shù)f(x)的解析式,并判斷f(x)的奇偶性;
(2)解關(guān)于x的方程f(x)=loga

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為,且雙曲線C與斜率為2的直線l相交,且其中一個(gè)交點(diǎn)為P(﹣3,0).

(1)求雙曲線C的方程及它的漸近線方程;

(2)求以直線l與坐標(biāo)軸的交點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度. 藥物在人體內(nèi)發(fā)揮治療作用時(shí),該藥物的血藥濃度應(yīng)介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關(guān)信息如圖所示:

根據(jù)圖中提供的信息,下列關(guān)于成人使用該藥物的說(shuō)法中,不正確的個(gè)數(shù)是

①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用

②每次服用該藥物1單位,兩次服藥間隔小于2小時(shí),一定會(huì)產(chǎn)生藥物中毒

③每間隔5.5小時(shí)服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用

④首次服用該藥物1單位3小時(shí)后,再次服用該藥物1單位,不會(huì)發(fā)生藥物中毒

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案