若函數(shù)y=x2-3x-4的定義域為[0,
3
2
]
,則值域為
 
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過函數(shù)的解析式求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的值域.
解答: 解:∵y=x2-3x-4,
∴對稱軸x=
3
2
,
∴函數(shù)在[0,
3
2
]遞減,
∴f(x)max=f(0)=-4,f(x)min=-
25
4
,
故答案為:[-
25
4
,-4].
點評:本題考查了二次函數(shù)的性質(zhì)問題,考查了函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
mx
mx-1+m1-x
+a,(a∈R,m>1),且f(0)=a+
2
5

(1)若f(1)=1,求實數(shù)a的值并計算f(-1)+f(3)的值;
(2)若不等式f(x)-2>0對任意的x∈[2,+∞)恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a=-1時,設(shè)g(x)=f(x+b),是否存在實數(shù)b使g(x)為奇函數(shù),若存在,求出b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,若b2+c2-
2
bc=a2,且
a
b
=
2
,則∠C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-2的零點有(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時,f(x)=|x|,則函數(shù)y=f(x)的圖象與函數(shù)y=log3|x|的圖象的交點的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
2x
x+2
,x1=1,xn=f(xn-1)n∈N*且n≥2,計算出x2,x3,x4分別為
2
3
,
1
2
2
5
,猜想xn等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓方程(x-1)2+(y-1)2=9,過點A(2,3)作圓的任意弦,則中點P的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖放置的邊長為1的正方形PABC沿x軸滾動,點B恰好經(jīng)過原點.設(shè)頂點P(x,y)的軌跡方程是y=f(x),則對函數(shù)y=f(x)有下列判斷:
①函數(shù)y=f(x)是偶函數(shù);
②對任意的x∈R,都有f(x+2)=f(x-2);
③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減.
其中判斷正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案