【題目】如圖,四棱錐中,平面,,,的中點(diǎn).

(Ⅰ)證明:平面平面

(Ⅱ)求異面直線所成角的余弦值;

(Ⅲ)求直線與平面所成角的正弦值.

【答案】(Ⅰ)證明見解析;(Ⅱ);() .

【解析】

(Ⅰ)由線面平行的性質(zhì)可得,由勾股定理可得,從而可得平面,進(jìn)而可得結(jié)果;(Ⅱ)取的中點(diǎn)為,連接,可證明為平行四邊形,所成的角,利用余弦定理可得結(jié)果;() ,由面面垂直的性質(zhì)可得平面,連接,則就是直線與平面所成角,求出的值,進(jìn)而可得結(jié)果.

(Ⅰ)平面平面,

,
,
平面

平面,

平面平面

(Ⅱ)

的中點(diǎn)為,連接

,

為平行四邊形,,

所成的角,

,,

又直角三角形中,

所以,

即異面直線所成角的余弦值為;

()

,為垂足.
()知平面平面
平面平面,
平面,連接,則
就是直線與平面所成角,

,,

即直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為奇函數(shù), 為偶函數(shù)

(1)求的解析式及定義域

(2)若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍

(3)如果函數(shù),若函數(shù)有兩個零點(diǎn)求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)分別為,離心率為,過的直線與橢圓交于兩點(diǎn),且的周長為

1)求橢圓的方程;

2)若直線與橢圓分別交于兩點(diǎn),且,試問點(diǎn)到直線的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用五種不同顏色給三棱臺的六個頂點(diǎn)染色,要求每個點(diǎn)染一種顏色,且每條棱的兩個端點(diǎn)染不同顏色.則不同的染色方法有___________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題pk2﹣8k﹣20≤0,命題q:方程1表示焦點(diǎn)在x軸上的雙曲線.

(1)命題q為真命題,求實(shí)數(shù)k的取值范圍;

(2)若命題“pq”為真,命題“pq”為假,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1) 如果,求函數(shù)的值域;

(2) 求函數(shù)的最大值;

(3) 如果對不等式中的任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中常數(shù).

(1)當(dāng)時,求函數(shù)的極值;

(2)若函數(shù)有兩個零點(diǎn),求證: ;

(3)求證: .

選做題:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某老小區(qū)建成時間較早,沒有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶數(shù),得到如下數(shù)據(jù)

年份編號x

1

2

3

4

5

年份

2014

2015

2016

2017

2018

加裝戶數(shù)y

34

95

124

181

216

)若有意向加裝暖氣的戶數(shù)y與年份編號x滿足線性相關(guān)關(guān)系求yx的線性回歸方程并預(yù)測截至2019年年底,該小區(qū)有多少戶居民有意向加裝暖氣;

2018年年底鄭州市民生工程決定對老舊小區(qū)加裝暖氣進(jìn)行補(bǔ)貼,該小區(qū)分到120個名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式分配名額,競拍方案如下:①截至2018年年底已登記在冊的居民擁有競拍資格;②每戶至多申請一個名額,由戶主在競拍網(wǎng)站上提出申請并給出每平方米的心理期望報價;③根據(jù)物價部門的規(guī)定,每平方米的初裝價格不得超過300元;④申請階段截止后,將所有申請居民的報價自高到低排列,排在前120位的業(yè)主以其報價成交;⑤若最后出現(xiàn)并列的報價,則認(rèn)為申請時問在前的居民得到名額,為預(yù)測本次競拍的成交最低價,物業(yè)公司隨機(jī)抽取了有競拍資格的50位居民進(jìn)行調(diào)查統(tǒng)計(jì)了他們的擬報競價,得到如圖所示的頻率分布直方圖:

1)求所抽取的居民中擬報競價不低于成本價180元的人數(shù);

2)如果所有符合條件的居民均參與競拍,請你利用樣本估計(jì)總體的思想預(yù)測至少需要報價多少元才能獲得名額(結(jié)果取整數(shù))

參考公式對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率為,以橢圓四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為.

1)求橢圓E的方程;

2)過橢圓E的右焦點(diǎn)作直線E交于AB兩點(diǎn),O為坐標(biāo)原點(diǎn),求面積的最大值,并求此時直線的方程.

查看答案和解析>>

同步練習(xí)冊答案