若0<α<
π
2
,0<β<
π
2
,且cosα=
7
2
10
,tanβ=
4
3
,則α+β=
 
考點:兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:由條件利用同角三角函數(shù)的基本關(guān)系求出tanα的值,再利用兩角和的正切公式求得tan(α+β)的值,再結(jié)合α、β的范圍,可得α+β的值.
解答: 解:0<α<
π
2
,0<β<
π
2
,且cosα=
7
2
10
,∴sinα=
2
10
,∴tanα=
sinα
cosα
=
1
7

又tanβ=
4
3
,tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=
1
7
+
4
3
1-
1
7
×
4
3
=
31
17
,
∴α+β=arctan
31
17
,
故答案為:arctan
31
17
點評:本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(b>a>0)的離心率為
3
2
,其中一個焦點F(
3
,0).
(Ⅰ)求橢圓E的方程;
(Ⅱ)若橢圓E與y軸的負(fù)半軸交于點P,l1,l2是過點P且相互垂直的兩條直線,l1與以橢圓E的長軸為直徑的圓交于兩點M、N,l2交橢圓E與另一點D,求△MND面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC利用斜二測畫法得到的水平放置的直觀圖△A′B′C′,其中A′B′∥y′軸,B′C′∥x′軸,若△A′B′C′的面積是3,則△ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(4,-2,-4),
b
=(6,-3,2),則(
a
+
b
)•(
a
-
b
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A={x|0<x<
2
},B={x|1≤x<2},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且¬p是¬q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(
π
6
-α)=
3
3
,則tan(
6
+α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i
1-i
的共軛復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中已知b=2,B=
π
6
,C=
π
4
,則△ABC的面積( 。
A、2
3
+2
B、
3
+1
C、2
3
-2
D、
3
-1

查看答案和解析>>

同步練習(xí)冊答案