11.二項(xiàng)式(2x3-$\frac{1}{\sqrt{x}}$)7展開式中的常數(shù)項(xiàng)為( 。
A.-14B.-7C.14D.7

分析 利用通項(xiàng)公式即可得出.

解答 解:(2x3-$\frac{1}{\sqrt{x}}$)7展開式中的通項(xiàng)公式:Tr+1=${∁}_{7}^{r}$(2x37-r$(-\frac{1}{\sqrt{x}})^{r}$=(-1)r27-r${∁}_{7}^{r}$${x}^{21-\frac{7r}{2}}$.
令21-$\frac{7r}{2}$=0,解得r=6.
∴常數(shù)項(xiàng)T7=$2×{∁}_{7}^{6}$=14.
故選:C.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中的假命題是(  )
A.?x0∈(0,+∞),x0<sinx0B.?x∈(-∞,0),ex>x+1
C.?x>0,5x>3xD.?x0∈R,lnx0<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合$A=\left\{{x|\frac{x+1}{x-2}<0}\right\}$,B={x|1<x≤2},則A∩B=( 。
A.(1,2)B.(1,2]C.[-1,2]D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若數(shù)列{an}為等差數(shù)列,Sn為其前n項(xiàng)和,且a2=3a4-6,則S9等于( 。
A.54B.50C.27D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.對(duì)于數(shù)列{an},記Sn=a1+a2+a3+…+an,Πn=a1a2a3…an.在正項(xiàng)等比數(shù)列{an}中,a5=$\frac{1}{4}$,a6+a7=$\frac{3}{2}$,則滿足Sn>Πn的最大正整數(shù)n的值為( 。
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在$△ABC中,∠A=\frac{π}{3},且({\overrightarrow{AB}+\overrightarrow{AC}})•\overrightarrow{BC}=0$,點(diǎn)M是△ABC外一點(diǎn),BM=2CM=2,則AM的最大值與最小值的差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“tanα≠$\sqrt{3}$”是“α≠$\frac{π}{3}$”的( 。
A.充分且必要條件B.既不充分也不必要條件
C.必要不充分條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若集合A={x|x>0},B={x|y=ln(x-1)},則A∩B等于(  )
A.(1,+∞)B.(0,1)C.[1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某次數(shù)學(xué)測(cè)試之后,數(shù)學(xué)組的老師對(duì)全校數(shù)學(xué)總成績分布在[105,135)的n名同學(xué)的19題成績進(jìn)行了分析,數(shù)據(jù)整理如下:
 組數(shù) 分組 19題滿分人數(shù) 19題滿分人數(shù)占本組人數(shù)比例
 第一組[105,110] 15 0.3
 第二組[110,115) 30 0.3
 第三組[115,120) x 0.4
 第四組[120,125) 100 0.5
 第五組[125,130) 120 0.6
 第六組[130,135) 195 y
(Ⅰ)補(bǔ)全所給的頻率分布直方圖,并求n,x,y的值;
(Ⅱ)現(xiàn)從[110,115)、[115,120)兩個(gè)分?jǐn)?shù)段的19題滿分的試卷中,按分層抽樣的方法抽取9份進(jìn)行展出,并從9份試卷中選出兩份作為優(yōu)秀試卷,優(yōu)秀試卷在[115,120)中的分?jǐn)?shù)記為ξ,求隨機(jī)變量ξ的分布列及期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案