若函數(shù)f(x)=x3-3x+a有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是________.

 

(-2,2)

【解析】由f(x)=x3-3x+a,得f′(x)=3x2-3,令f′(x)=3x2-3=0,得x=±1,由圖象可知f(x)的極大值為f(-1)=2+a,f(x)的極小值為f(1)=a-2,要使函數(shù)f(x)=x3-3x+a有三個(gè)不同的零點(diǎn),則有f(-1)=2+a>0,f(1)=a-2<0,即-2<a<2,所以實(shí)數(shù)a的取值范圍是(-2,2).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:選擇題

若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上(  )

A.單調(diào)遞增 B.單調(diào)遞減

C.先增后減 D.先減后增

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:選擇題

設(shè)集合A=[0,),B=[,1],函數(shù)f(x)=,若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是(  )

A.(0,] B.(,)

C.(] D.[0,]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-12導(dǎo)數(shù)的應(yīng)用二(解析版) 題型:選擇題

函數(shù)f(x)=ex(sinx+cosx)在區(qū)間[0,]上的值域?yàn)?  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:解答題

已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.

(1)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率;

(2)當(dāng)a≠時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:選擇題

若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx-2在x=1處有極值,則ab的最大值為(  )

A.2 B.3 C.6 D.9

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:解答題

已知函數(shù)f(x)=x2-alnx(a∈R).

(1)若函數(shù)f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;

(2)若函數(shù)f(x)在(1,+∞)上為增函數(shù),求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨(dú)立重復(fù)實(shí)驗(yàn)與二項(xiàng)分布(解析版) 題型:填空題

已知數(shù)列{an}是單調(diào)遞增的等差數(shù)列,從a1,a2,a3,a4,a5,a6,a7中取走任意三項(xiàng),則剩下四項(xiàng)依然構(gòu)成單調(diào)遞增的等差數(shù)列的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-5古典概型(解析版) 題型:選擇題

設(shè)a∈{1,2,3,4},b∈{2,4,8,12},則函數(shù)f(x)=x3+ax-b在區(qū)間[1,2]上有零點(diǎn)的概率為(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案