已知在等差數(shù)列{an}中,S3=9,a6=11.
(1)求{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}中,b1=a1,b2=a2,求{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)首先根據(jù)S3=9,a6=11,可得a1+5d=11,3a1+3d=9,求出數(shù)列的首項(xiàng)和公差,然后求出{an}的通項(xiàng)公式即可;
(2)首先求出等比數(shù)列的前兩項(xiàng),用第二項(xiàng)除以第一項(xiàng),求出公比是多少;然后求出等比數(shù)列{bn}的通項(xiàng)公式,以及{bn}的前n項(xiàng)和Tn即可.
解答: 解:(1)根據(jù)S3=9,a6=11,
可得a1+5d=11,3a1+3d=9,
解得a1=1,d=2,
所以{an}的通項(xiàng)公式為:
an=1+2(n-1)=2n-1;
(2)b1=a1=1,b2=a2=1+2=3,
所以等比數(shù)列{bn}的公比q=3,
{bn}的通項(xiàng)公式為:bn=3n-1,
所以{bn}的前n項(xiàng)和:
Tn=1+3+32+…+3n-1=
1-3n
1-3
=
3n-1
2
點(diǎn)評(píng):本題主要考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式以及前n項(xiàng)和的求法的運(yùn)用,屬于基礎(chǔ)題,解答此題的關(guān)鍵是根據(jù)等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinα=2cosα,則
1
sin2α
的值等于( 。
A、
4
5
B、
5
4
C、-
4
5
D、-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P到點(diǎn)F(4,0)的距離比它到直線x+5=0的距離少1,則動(dòng)點(diǎn)P的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓被直線:x-
3
y+4=0截得的弦長為2
3

(Ⅰ)求圓O的方程;
(Ⅱ)若斜率為2的直線l與圓O相交于A,B兩點(diǎn),且點(diǎn)D(-1,0)在以AB為直徑的圓的內(nèi)部,求直線L在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形的三內(nèi)角A、B、C的對(duì)邊為a,b,c,且△ABC的面積為S=
3
2
abccosC
(1)若a=l,b=2,求c的值.
(2)若a=1,且
π
4
≤A≤
π
3
,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=-
1
2
,則sin2x+3sinxcosx-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx(k≠0),且滿足f(x+1)•f(x)=x2+x,
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)f(x)為定義域上的增函數(shù),h(x)=
f(x)+1
f(x)-1
(f(x)≠1),則是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值;若不存在,請(qǐng)說明理由;
(Ⅲ)已知g(x)=(2a-1)x2+3x-3-a,若F(x)=f(x+1)f(x)+g(x)在[-1,1]上存在零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2
ax2+ax+3
的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+x
+
1-x

(1)求函數(shù)f(x)的定義域和值域;
(2)設(shè)F(x)=
a
2
•[f2(x)-2]+f(x)(a為實(shí)數(shù)),記函數(shù)F(x)在a<0時(shí)的最大值g(a),若-m2+2tm+
2
≤g(a)對(duì)a<0所有的實(shí)數(shù)a及t∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案