已知函數(shù),.
(Ⅰ)求函數(shù)的最小值和最小正周期;
(Ⅱ)設(shè)的內(nèi)角、、的對(duì)邊分別為、、,滿足,且,求、的值.
(Ⅰ)最小值為,最小正周期為;(Ⅱ).
解析試題分析:(Ⅰ)將原函數(shù)化為一角一函數(shù)形式解答;(Ⅱ)由得出,然后根據(jù)條件得,利用余弦定理得,聯(lián)立解出.
試題解析:(Ⅰ) 3分
則的最小值是,最小正周期是; 6分
(Ⅱ),則, 7分
, ,所以,
所以, 9分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/7f/c3b7f342c03e7b83c4b30b9595cbeb7d.png" style="vertical-align:middle;" />,所以由正弦定理得 10分
由余弦定理得,即 11分
由①②解得:, 12分
考點(diǎn):三角函數(shù)化簡(jiǎn)、三角函數(shù)的周期、正弦定理、余弦定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的一系列對(duì)應(yīng)值如下表:
0 | ||||||
0 | 1 | 0 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)當(dāng)時(shí),求的最大值和最小值;
(II)設(shè)的內(nèi)角所對(duì)的邊分別為,且,若向量與向量共線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸非負(fù)半軸重合,
終邊經(jīng)過點(diǎn),且.
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)若點(diǎn)為平面區(qū)域上的一個(gè)動(dòng)點(diǎn),試確定角的取值范圍,并求函數(shù)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若函數(shù)的圖像關(guān)于直線對(duì)稱,求的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,其中向量,,.在中,角A、B、C的對(duì)邊分別為,,.
(1)如果三邊,,依次成等比數(shù)列,試求角的取值范圍及此時(shí)函數(shù)的值域;
(2) 在中,若,邊,,依次成等差數(shù)列,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,角所對(duì)的邊分別為且滿足.
(I)求角的大;
(II)求的最大值,并求取得最大值時(shí)角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是半徑為2,圓心角為的扇形,是扇形的內(nèi)接矩形.
(Ⅰ)當(dāng)時(shí),求的長(zhǎng);
(Ⅱ)求矩形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com