14.已知圓的方程為x2+y2=1,則圓心到直線x+y+2=0的距離為( 。
A.1B.2C.2$\sqrt{2}$D.$\sqrt{2}$

分析 利用點到直線的距離公式即可得出.

解答 解:圓的方程為x2+y2=1,則圓心(0,0)到直線x+y+2=0的距離=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
故選:D.

點評 本題考查了點到直線的距離公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若不等式組$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$,表示的平面區(qū)域是一個三角形區(qū)域,則a的取值范圍是( 。
A.a≥$\frac{4}{3}$B.0<a≤1C.1≤a≤$\frac{4}{3}$D.0<a≤1或a≥$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中正確的是(  )
A.用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺
B.有兩個面平行,其他面都是平行四邊形的幾何體叫棱柱
C.棱臺的底面是兩個相似的正方形
D.棱臺的側(cè)棱延長后必交于一點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.關(guān)于下列命題:
①若函數(shù)f(3x+1)的定義域為(-∞,0),則函數(shù)f(x)的定義域為(-∞,1);
②若函數(shù)f(x)的定義域為(-∞,1),函數(shù)f($\frac{1}{x}$)的定義域為(-∞,1);
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|-2≤x≤2};
④若函數(shù)y=$\frac{1}{x}$的定義域是{x|x>2},則它的值域是{y|y≤$\frac{1}{2}$};
其中不正確的命題的序號是②③④.
( 注:把你認為不正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.化簡:tanα+$\sqrt{\frac{1}{co{s}^{2}α}-1}$+2sin2α+2cos2α,其中α是第四象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等比數(shù)列{an}中,公比q=2,a1+a4+a7…+a97=11,則數(shù)列{an}的前99項的和S99=( 。
A.99B.88C.77D.66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線l經(jīng)過兩個點A(0,4),B(3,0),則直線l的方程為( 。
A.4x+3y-12=0B.3x+4y-12=0C.4x+3y+12=0D.3x+4y+12=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,在定義域內(nèi)既是奇函數(shù)又是增函數(shù)的為(  )
A.y=3xB.y=2x(-1≤x<1)
C.$y=\left\{\begin{array}{l}{x^2}+x,x>0\\{x^2}-x,x<0\end{array}\right.$D.y=2x-2-x

查看答案和解析>>

同步練習(xí)冊答案