【題目】已知函數(shù)f(x)= ﹣lnx.
(1)若f(x)在x=3處取得極值,求實(shí)數(shù)a的值;
(2)若f(x)≥5﹣3x恒成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:函數(shù)f(x)定義域?yàn)椋?,+∞),

由f'(3)=0,得a=﹣3.

當(dāng)a=﹣3時(shí),由f'(x)>0,得0<x<3,由f'(x)<0,得x>3,

∴f(x)在(0,3)上單調(diào)遞增,在(3,+∞)上單調(diào)遞減,

即f(x)在x=3處取得極大值,符合題意,則實(shí)數(shù)a=﹣3;


(2)解:設(shè) ,則當(dāng)x>0時(shí),g(x)≥0恒成立,由g(1)=a﹣2≥0,得a≥2, ,

方程g'(x)=0有一負(fù)根x1和一正根x2,x1<0<x2.其中x1不在函數(shù)定義域內(nèi),

∴g(x)在(0,x2)上是減函數(shù),在(x2,+∞)上是增函數(shù),即g(x)在定義域上的最小值為g(x2),

依題意只需g(x2)≥0,即 ,

又∵

,∵ ,∴ ,

∴g(x2)=3x2﹣1﹣lnx2+3x2﹣5≥0,即6x2﹣6﹣lnx2≥0.

令h(x)=6x﹣6﹣lnx,則 ,

當(dāng) 時(shí),h′(x)>0,

∴h(x)是增函數(shù).

又∵h(yuǎn)(1)=0,

∴6x2﹣6﹣lnx2≥0的解集為[1,+∞),即x2≥1,

,即a的取值范圍是[2,+∞)


【解析】(1)先求函數(shù)的定義域,然后求出導(dǎo)函數(shù),根據(jù)f(x)在x=3處取得極值,則f′(3)=0,求出a的值,然后驗(yàn)證即可;(2)設(shè) ,然后利用導(dǎo)數(shù)研究該函數(shù)的最小值,使得最小值大于等于0,從而可求出a的取值范圍.
【考點(diǎn)精析】掌握函數(shù)的極值是解答本題的根本,需要知道極值反映的是函數(shù)在某一點(diǎn)附近的大小情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各點(diǎn)中,在不等式表示的平面區(qū)域內(nèi)的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi),已知四邊形ABCD,CD⊥AD,∠CBD= ,AD=5,AB=7,且cos2∠ADB+3cos∠ADB=1,則BC的長(zhǎng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,公差,且,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)是首項(xiàng)為1,公比為的等比數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】戶外運(yùn)動(dòng)已經(jīng)成為一種時(shí)尚運(yùn)動(dòng),某單位為了了解員工喜歡戶外運(yùn)動(dòng)是否與性別有關(guān),對(duì)本單位的50名員工進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

喜歡戶外運(yùn)動(dòng)

不喜歡戶外運(yùn)動(dòng)

合計(jì)

男性

5

女性

10

合計(jì)

50

已知在這50人中隨機(jī)抽取1人抽到喜歡戶外運(yùn)動(dòng)的員工的概率是
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜歡戶外運(yùn)動(dòng)與性別有關(guān)?并說明你的理由;
(3)經(jīng)進(jìn)一步調(diào)查發(fā)現(xiàn),在喜歡戶外運(yùn)動(dòng)的10名女性員工中,有4人還喜歡瑜伽.若從喜歡戶外運(yùn)動(dòng)的10位女性員工中任選3人,記ξ表示抽到喜歡瑜伽的人數(shù),求ξ的分布列和數(shù)學(xué)期望.
下面的臨界值表僅供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3.
(1)若a=1,解不等式f(x)≤5;
(2)若函數(shù)f(x)有最小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】供電部門對(duì)某社區(qū)位居民2017年12月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為, , 五組,整理得到如下的頻率分布直方圖,則下列說法錯(cuò)誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費(fèi),選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),軸正半軸為極軸)中,圓的方程為

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案