13.若f(x)=x3-ax2+1在(1,3)內單調遞減,則實數(shù)a的范圍是(  )
A.[$\frac{9}{2}$,+∞)B.(-∞,3]C.(3,$\frac{9}{2}$)D.(0,3)

分析 由函數(shù)f(x)=x3-ax2+1在(0,3)內單調遞減轉化成f'(x)≤0在(0,3)內恒成立,利用參數(shù)分離法即可求出a的范圍.

解答 解:∵函數(shù)f(x)=x3-ax2+1在(0,3)內單調遞減,
∴f'(x)=3x2-2ax≤0在(0,3)內恒成立.
即a≥$\frac{3}{2}$x在(0,3)內恒成立.
∵g(x)=$\frac{3}{2}$x在(0,3]上的最大值為$\frac{3}{2}$×3=$\frac{9}{2}$,
故a≥$\frac{9}{2}$
∴故選:A.

點評 此題主要考查利用導函數(shù)的正負判斷原函數(shù)的單調性,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.若向量$\overrightarrow a$,$\overrightarrow b$滿足:$|{\overrightarrow a}|=1$,$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow a$,$({2\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,則$\overrightarrow a$,$\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.圓x2+(y-a)2=9與橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$有公共點,則實數(shù)a的取值范圍是[-6,6].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知圓O:x2+y2=4,圓O1:(x-3)2+y2=1,過x軸的正半軸上一點M引圓O1的切線,切點為A,同時切線交圓O于B,C兩點,且AB=BC,則點M的坐標是(7,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知公差不為零的等差數(shù)列{an}的前n項和為Sn,且a5+S7=74,a4是a1和a13的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設{$\frac{_{n}}{{a}_{n}}$}是首項和公比均為3的等比數(shù)列,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.不等式1<|x+1|<3的解集為(-4,-2)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設命題p:不等式x+x2≥a對x≥0恒成立,命題q:關于x的方程x2-2x-a=0在R上有解,若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體的體積的最大值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.關于x的不等式2<log2(x+5)<3的整數(shù)解的集合為{0,1,2}.

查看答案和解析>>

同步練習冊答案