【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間滿足關(guān)系式(為大于0的常數(shù)),現(xiàn)隨機抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
(1)求關(guān)于的回歸方程;(提示:與有線性相關(guān)關(guān)系)
(2)按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率.
參考數(shù)據(jù)及公式:
,,,
對于樣本(),其回歸直線的斜率和截距的最小二乘估計公式分別為:
,
【答案】(1)(2)
【解析】分析:(1)對兩邊取自然對數(shù)得,令,,結(jié)合線性回歸方程的計算公式可得回歸方程為.
(2)由題意可得優(yōu)等品有3件.由題意可知從6件合格品中選出3件的方法數(shù)共20種;其中恰 好有2件為優(yōu)等品的取法共9種;則恰好取得兩件優(yōu)等品的概率為.
詳解:(1)對兩邊取自然對數(shù)得,
令,,得:, ,,
解得:,所以,回歸方程為.
(2)令,解得:,∴,即優(yōu)等品有3件.
設(shè)“恰好取得兩件優(yōu)等品”記為事件,記優(yōu)等品為,其余產(chǎn)品為1,2,3,
則從6件合格品中選出3件的方法數(shù)為:, ,,,,,,,,,,,,,,,,,共20種;
其中恰 好有2件為優(yōu)等品的取法有:,,,,,,,,,共9種;
所以,恰好取得兩件優(yōu)等品的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若非零向量 與向量 的夾角為鈍角, ,且當(dāng) 時, (t∈R)取最小值 .向量 滿足 ,則當(dāng) 取最大值時, 等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個對稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘亞歷山大時期的數(shù)學(xué)家帕普斯(Pappus,約300~約350)在《數(shù)學(xué)匯編》第3卷中記載著一個定理:“如果同一平面內(nèi)的一個閉合圖形的內(nèi)部與一條直線不相交,那么該閉合圖形圍繞這條直線旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積等于閉合圖形面積乘以重心旋轉(zhuǎn)所得周長的積.”如圖,半圓的直徑,點是該半圓弧的中點,半圓弧與直徑所圍成的半圓面(陰影部分不含邊界)的重心位于對稱軸上.若半圓面繞直徑所在直線旋轉(zhuǎn)一周,則所得到的旋轉(zhuǎn)體的體積為__________,___________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上是減函數(shù),求的取值范圍;
(2)設(shè),,若函數(shù)有且只有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在的偶函數(shù),在區(qū)間是減函數(shù),且圖象過點原點,則不等式的解集為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com