【題目】已知實數(shù)x,y滿足x3<y3,則下列不等式中恒成立的是( 。

A. x>(y B. ln(x2+1)>ln(y2+1)

C. D. tanx>tany

【答案】A

【解析】

因為冪函數(shù)f(x)=x3是R上的增函數(shù),且f(x)=x3<f(y)=y3,所以得xy,又因為g(x)=(x是R上的減函數(shù),所以g(x)g(y),即(x>(y.

因為冪函數(shù)f(x)=x3是R上的增函數(shù),且f(x)=x3<f(y)=y3,所以得x<y,

又因為g(x)=(x是R上的減函數(shù),所以g(x)g(y),即(x>(y,所以A正確;

因為ln(x2+1)>ln(y2+1)x2+1>y2+1x2>y2,所以B也不正確;

因為>00,所以C也不正確;

x=,y=時,tanx=tany=1,所以D也不正確.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù)),點的極坐標為,設直線與曲線相交于兩點

1寫出曲線的直角坐標方程和直線的普通方程;

2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,).

(1)求函數(shù)的零點;

(2)設、均為正整數(shù),且為最簡根式,若存在,使得可唯一表示為的形式(),求證:

(3)已知,是否存在,使得

成立,若存在,試求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓O:與坐標軸分別交于A1,A2,B1,B2(如圖).

(1)點Q是圓O上除A1,A2外的任意點(如圖1),直線A1Q,A2Q與直線交于不同的兩點M,N,求線段MN長的最小值;

(2)點P是圓O上除A1,A2,B1,B2外的任意點(如圖2),直線B2Px軸于點F,直線A1B2A2P于點E.設A2P的斜率為k,EF的斜率為m,求證:2mk為定值.

(圖1) (圖2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,D,E分別為BC,PD的中點,FAB上一點,且.

1)求證:平面PAD

2)求證:平面PAC;

3)若二面角60°,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:如果數(shù)列的任意連續(xù)三項均能構成一個三角形的三邊長,則稱為三角形”數(shù)列對于“三角形”數(shù)列,如果函數(shù)使得仍為一個三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”

1)已知是首項為2,公差為1的等差數(shù)列,若,是數(shù)列的保三角形函數(shù)”,求的取值范圍;

2)已知數(shù)列的首項為2019,是數(shù)列的前項和,且滿足,證明是“三角形”數(shù)列;

3)求證:函數(shù),是數(shù)列1,,的“保三角形函數(shù)”的充要條件是,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于的方程有兩個不同的解,則實數(shù)的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)aR).

1)討論yfx)的單調(diào)性;

2)若函數(shù)fx)有兩個不同零點x1x2,求實數(shù)a的范圍并證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班同學利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取n人進行了一次生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳組的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

P

第三組

100

0.5

第四組

a

0.4

第五組

30

0.3

第六組

15

0.3

1)補全頻率分布直方圖,并求n,a,p的值;

2)求年齡段人數(shù)的中位數(shù)和眾數(shù);(直接寫出結果即可)

3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取3人作為領隊,求選取的3名領隊中年齡都在歲的概率.

查看答案和解析>>

同步練習冊答案