【題目】已知函數(shù)f(x)=1g(1﹣x)的值域為(﹣∞,0),則函數(shù)f(x)的定義域為( )
A.[0,+∞]
B.(0,1)
C.[﹣9,+∞)
D.[﹣9,1)
【答案】B
【解析】解:由函數(shù)f(x)=1g(1﹣x)的值域為(﹣∞,0),
則lg(1﹣x)<0,
∴0<1﹣x<1,
解得,0<x<1.
則函數(shù)f(x)的定義域為:(0,1).
故選:B.
【考點精析】本題主要考查了函數(shù)的定義域及其求法的相關(guān)知識點,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知經(jīng)過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.
(1)求橢圓的離心率;
(2)若,設(shè)分別為橢圓的左、右焦點,斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓交于兩點,若點在以為直徑的圓內(nèi)部,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若,則稱為的“不動點”;若,則稱為的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為和,即,.
()設(shè)函數(shù),求集合和.
()求證:.
()設(shè)函數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為是上一點.
(1)求橢圓的方程;
(2)設(shè)是分別關(guān)于兩坐標軸及坐標原點的對稱點,平行于的直線交于異于的兩點.點關(guān)于原點的對稱點為.證明:直線與軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=,Sn=b1+b2+…+bn,對任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的前項和為, , ().
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知首項都是1的兩個數(shù)列{},{}(≠0,n∈N*)滿足
(1)令,求數(shù)列{}的通項公式;
(2)若=,求數(shù)列{}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)是奇函數(shù),求實數(shù)的值;
(2)在在(1)的條件下,判斷函數(shù)與函數(shù)的圖像公共點個數(shù),并說明理由;
(3)當時,函數(shù)的圖象始終在函數(shù)的圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com