【題目】已知函數(shù)fx)=–3x2+2xm+1.

(1)若x=0為函數(shù)的一個零點,求m的值;

(2)當m為何值時,函數(shù)有兩個零點、一個零點、無零點.

【答案】(1)1;(2)故當時,函數(shù)有兩個零點;當時,函數(shù)有一個零點;當時,函數(shù)無零點.

【解析】

(1)函數(shù)的一個零點為x=0,說明函數(shù)的圖象過原點,故有f(0)=0,解方程求m的值;

(2)函數(shù)的零點即為函數(shù)的圖象與x軸的交點的橫坐標,圖象和x軸分別有2個、1個或0個交點,則判別式大于0、等于0、小于0,解不等式即可得到范圍.

(1)因為x=0為函數(shù)的一個零點,

所以0是對應方程的根,

所以1–m=0,解得m=1.

(2)函數(shù)有兩個零點,則對應方程–3x2+2xm+1=0有兩個根

易知Δ>0,即Δ=4+12(1–m)>0,可解得m<;

Δ=0,可解得m=

Δ<0,可解得m>

故當m<時,函數(shù)有兩個零點;

m=時,函數(shù)有一個零點;

m>時,函數(shù)無零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,

(1)相交于點,且平面,求實數(shù)的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程上有兩個不等的實數(shù)根,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四組函數(shù)中,f (x)g (x)表示同一個函數(shù)的是(

A.f (x) = |x|,g(x) =B.f (x) = 2x,g (x) =

C.f (x) = x,g (x) =D.f (x) = x,g (x) =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有數(shù)學王子的稱號,他和阿基米德、牛頓并列為世界三大數(shù)學家,用其名字命名的高斯函數(shù)為:設,用表示不超過x的最大整數(shù),則稱為高斯函數(shù),例如:,.已知函數(shù),則關于函數(shù)的敘述中正確的是(

A.是偶函數(shù)B.是奇函數(shù)

C.R上是增函數(shù)D.的值域是

E.的值域是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認為收看開幕式與性別有關?

(Ⅱ)現(xiàn)從參與問卷調查且收看了開幕式的學生中采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男女學生各選取多少人?

(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于曲線C,給出下列五個命題:

①曲線C關于直線y=x對稱;

②曲線C關于點對稱;

③曲線C上的點到原點距離的最小值為

④當時,曲線C上所有點處的切線斜率為負數(shù);

⑤曲線C與兩坐標軸所圍成圖形的面積是.

上述命題中,為真命題的是_____.(將所有真命題的編號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求圓和圓的極坐標方程;

(2)過點的直線與圓異于點的交點分別為點,與圓異于點的交點分別為點,且,求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案