解不等式:
(1)|x-1|<1-2x
(2)|x-1|-|x+1|>x.
考點:絕對值不等式的解法
專題:不等式的解法及應用
分析:(1)由題意可得
1-2x>0
2x-1<x-1<1-2x
,由此求得x的范圍.
(2)把|x-1|-|x+1|>x轉化為與之等價的三個不等式組,求得每個不等式組的解集,再取并集,即得所求.
解答: 解:(1)由|x-1|<1-2x,可得
1-2x>0
2x-1<x-1<1-2x
,求得x<0,
故不等式的解集為(-∞,0).
(2)由|x-1|-|x+1|>x 可得
x<-1
1-x-(-x-1)>x
①,或
-1≤x<1
1-x-(x+1)>x
,或②
x≥1
x-1-(x+1)>x
③.
解①求得x<-1,解②求得-1≤x<0,解③求得 x∈∅.
綜上可得,x∈(-∞,0).
點評:本題主要考查絕對值不等式的解法,體現(xiàn)了轉化、分類討論的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),過雙曲線的一個焦點作實軸的垂線交雙曲線于A、B兩點,若
OA
OB
=0(O為坐標原點),則雙曲線的離心率e等于( 。
A、2
B、
3
C、
3
+1
2
D、
5
+1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某公司為了實現(xiàn)1000萬元利潤的目標,準備制定一個激勵銷售人員的獎勵方案,在銷售利潤達到10萬元時,按銷售利潤進行獎勵,且獎金y(單位:萬元)隨銷售利潤x(單位:萬元)的增加而增加,但獎金總數(shù)不超過5萬元,同時獎金不超過利潤的25%,則下列哪個獎勵模型比較符合該公司的要求( 。
A、y=0.25x
B、y=log7x+1
C、y=1.002x
D、y=
3x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足
y≤x
x+y≤1
y≥-1
,則z=2x+y的最小值是( 。
A、3
B、-3
C、
3
2
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)滿足xf′(x)>-f(x)在R上恒成立,且a>b,則( 。
A、af(b)>bf(a)
B、af(a)>bf(b)
C、af(a)<bf(b)
D、af(b)<bf(a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別a,b,c.已知向量
m
=(cosA,a),
n
=(b-2c,cosB-2cosC),滿足
m
n

(1)求
sinB
sinC
的值;
(2)若cosA=
1
4
,a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第一象限角,且cosα=
5
13

(1)求sin2α的值
(2)求
sin(α+
π
4
)
cos(2α+4π)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,
m
=(sinA,sinB-sinC),
n
=(a-
3
b,b+c),且
m
n

(1)求角C的值;
(2)若△ABC為銳角三角形,且c=1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)y=f(x)的定義域為R,且當x∈R時,f(m+x)=f(m-x)恒成立,求證y=f(x)的圖象關于直線x=m對稱;
(2)若函數(shù)y=log2|ax-1|的圖象的對稱軸是x=2,求非零實數(shù)a的值.

查看答案和解析>>

同步練習冊答案