【題目】遞增數(shù)列1,3,4,9,10,12,13,…由一些正整數(shù)組成,它們要么是3的冪要么是若干個(gè)不同的3的冪的和.求第2014項(xiàng)的值.

【答案】88329

【解析】

記此數(shù)列為.則.

用二進(jìn)制表示項(xiàng)的序號(hào)n,三進(jìn)制表示項(xiàng),

,

,

,

,

,

.

由題意,知的三進(jìn)制表示各位僅可取0、1兩個(gè)值且單調(diào)遞增,由此可猜測(cè)當(dāng)時(shí),.

接下來(lái)用數(shù)學(xué)歸納法證明.

假設(shè)當(dāng)時(shí),命題成立.

則當(dāng)時(shí),其中,,必有整數(shù),使.

.

于是,.

由假設(shè)得,它是若干不同的3的冪之和且小于的最大值.

單調(diào)遞增知

,

其中,.

,

仍為中某一項(xiàng)(當(dāng)然).

于是,即

.

.

另一方面,,

當(dāng)然,可表示為若干個(gè)互不相同的3的冪之和,故存在,使.

從而,.

,于是,,即.

因此,.

這導(dǎo)致.

故當(dāng)時(shí),命題仍成立.

因?yàn)?/span>,所以,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=x+1+|3﹣x|,x≥﹣1.
(I)求不等式f(x)≤6的解集;
(Ⅱ)若f(x)的最小值為n,正數(shù)a,b滿(mǎn)足2nab=a+2b,求2a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x+ ,其中a>0
(Ⅰ)若f(x)在(2,+∞)上存在極值點(diǎn),求a的取值范圍;
(Ⅱ)設(shè)x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,記為M(a).則a≤e+ 時(shí),M(a)是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李冶(1192﹣1279),真定欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩(shī)人、晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問(wèn)題:求圓的直徑,正方形的邊長(zhǎng)等,其中一問(wèn):現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長(zhǎng)分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)(
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e為自然對(duì)數(shù)的底數(shù),若f(1)=0,f′(x)是f(x)的導(dǎo)函數(shù),函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個(gè)零點(diǎn),則a的取值范圍是(
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時(shí),求函數(shù)上的值域;

(2)若函數(shù)上的最小值為3,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=mln(x+1),g(x)= (x>﹣1).
(Ⅰ)討論函數(shù)F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|a﹣x|(a∈R)
(Ⅰ)當(dāng)a= 時(shí),求使不等式f(2x﹣ )>2f(x+2)+2成立的x的集合A;
(Ⅱ)設(shè)x0∈A,證明f(x0x)≥x0f(x)+f(ax0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a是一個(gè)各位數(shù)字都不是0且沒(méi)有重復(fù)數(shù)字的三位數(shù),將組成a的3個(gè)數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a),(例如a=746, 則I(a)=467,D(a)=764)閱讀如右圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個(gè)a,輸出的結(jié)果b=

查看答案和解析>>

同步練習(xí)冊(cè)答案