【題目】出租車幾何學是由十九世紀的赫爾曼·閔可夫斯基所創(chuàng)立的.在出租車幾何學中,點還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣.直角坐標系內(nèi)任意兩點,,定義它們之間的一種“距離”:;到兩點P.Q“距離”相等的點的軌跡稱為線段PQ的“垂直平分線”.已知點、、,請解決以下問題:
(1)求線段上一點到原點的“距離”;
(2)寫出線段AB的“垂直平分線”的軌跡方程,并作出大致圖像;
(3)定義:若三角形三邊的“垂直平分線”交于一點,則該點稱為三角形的“外心”.試判斷 的“外心”是否存在,如果存在,求出“外心”;如果不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a=1時,求函數(shù)在(2,)處的切線方程:
(2)當a=2時,求函數(shù)的單調(diào)區(qū)間和極值;
(3)若在上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左.右焦點分別為,為坐標原點.
(1)若斜率為的直線交橢圓于點,若線段的中點為,直線的斜率為,求的值;
(2)已知點是橢圓上異于橢圓頂點的一點,延長直線,分別與橢圓交于點,設(shè)直線的斜率為,直線的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取100件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:毫克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.
產(chǎn)品質(zhì)量/毫克 | 頻數(shù) |
3 | |
9 | |
19 | |
35 | |
22 | |
7 | |
5 |
(1)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,能否在犯錯誤的概率不超過0.15的前提下認為產(chǎn)品的包裝合格與兩條自動包裝流水線的選擇有關(guān)?
甲流水線 | 乙流水線 | 總計 | |
合格品 | |||
不合格品 | |||
總計 |
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,)
(2)按照以往經(jīng)驗,在每小時次品數(shù)超過180件時,產(chǎn)品的次品率會大幅度增加,為檢測公司的生產(chǎn)能力,同時盡可能控制不合格品總量,公司工程師抽取幾組一小時生產(chǎn)產(chǎn)品數(shù)據(jù)進行次品情況檢查分析,在(單位:百件)件產(chǎn)品中,得到次品數(shù)量(單位:件)的情況匯總?cè)缦卤硭荆?/span>
(百件) | 0.5 | 2 | 3.5 | 4 | 5 |
(件) | 2 | 14 | 24 | 35 | 40 |
根據(jù)公司規(guī)定,在一小時內(nèi)不允許次品數(shù)超過180件,請通過計算分析,按照公司的現(xiàn)有生產(chǎn)技術(shù)設(shè)備情況,判斷可否安排一小時生產(chǎn)2000件的任務?
(參考公式:用最小二乘法求線性回方程的系數(shù)公式
;)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地的出租車價格規(guī)定:起步費元,可行公里,公里以后按每公里元計算,可再行公里;超過公里按每公里元計算,假設(shè)不考慮堵車和紅綠燈等所引起的費用,也不考慮實際收取費用去掉不足一元的零頭等實際情況,即每一次乘車的車費由行車里程唯一確定。
(1)若小明乘出租車從學校到家,共公里,請問他應付出租車費多少元?
(2)求車費(元)與行車里程(公里)之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等腰三角形△ABC的兩腰AB和AC所在直線的方程分別為和是底邊BC上一點,求:
(1)底邊BC所在直線的方程;
(2)△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com