【題目】為了研究某學科成績是否與學生性別有關,采用分層抽樣的方法,從高二年級抽取了名男生和名女生的該學科成績,得到如圖所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定分以上為優(yōu)分(含分).

(1)(i)請根據(jù)圖示,將2×2列聯(lián)表補充完整;

優(yōu)分

非優(yōu)分

總計

男生

女生

總計

50

ii)據(jù)列聯(lián)表判斷,能否在犯錯誤概率不超過的前提下認為學科成績與性別有關?

(2)將頻率視作概率,從高二年級該學科成績中任意抽取名學生的成績,求成績?yōu)閮?yōu)分人數(shù)的分布列與數(shù)學期望.

參考公式:

參考數(shù)據(jù):

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)(i)列聯(lián)表見解析;(ii)能在犯錯誤概率不超過的前提下認為該學科成績與性別有關;(2)分布列見解析;

【解析】

(1)i)本題可通過題意得出男生與女生得優(yōu)分與非優(yōu)分的人數(shù),然后填表即可;

ii)可先通過列聯(lián)表計算出的觀測值,然后與表中數(shù)據(jù)對比即可得出結果;

(2)可通過題意得出優(yōu)分人數(shù)X服從二項分布,根據(jù)即可繪出成績?yōu)閮?yōu)分人數(shù)的分布列,然后根據(jù)二項分布即可求出.

(1)(i)根據(jù)圖示,將列聯(lián)表補充完整如下:

優(yōu)分

非優(yōu)分

總計

男生

9

21

30

女生

11

9

20

總計

20

30

50

ii的觀測值:

,

所以能在犯錯誤概率不超過10%的前提下認為該學科成績與性別有關;

(2)由于有較大的把握認為該學科成績與性別有關,

因此可將男女生成績的優(yōu)分頻率視作概率;

從高二年級中任意抽取3名學生的該學科成績中,

優(yōu)分人數(shù)服從二項分布

,,

;

,;

;

;

的分布列為:

X

0

1

2

3

p

數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)購人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來越多的便捷移動支付方式受到了人們的青睞,更被網(wǎng)友們評為“新四大發(fā)明”之一.隨著人們消費觀念的進步,許多人喜歡用信用卡購物,考慮到這一點,一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開發(fā)的新支付方式,簡單便捷,同時也滿足了部分網(wǎng)上消費群體在支付寶余額不足時的“賒購”消費需求.為了調(diào)查使用螞蟻花唄“賒購”消費與消費者年齡段的關系,某網(wǎng)站對其注冊用戶開展抽樣調(diào)查,在每個年齡段的注冊用戶中各隨機抽取100人,得到各年齡段使用螞蟻花唄“賒購”的人數(shù)百分比如圖所示.

1)由大數(shù)據(jù)可知,在1844歲之間使用花唄“賒購”的人數(shù)百分比y與年齡x成線性相關關系,利用統(tǒng)計圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購”人數(shù)百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數(shù)字);

2)該網(wǎng)站年齡為20歲的注冊用戶共有2000人,試估算該網(wǎng)站20歲的注冊用戶中使用花唄“賒購”的人數(shù);

3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊用戶人數(shù)相同,現(xiàn)從1835歲之間使用花唄“賒購”的人群中按分層抽樣的方法隨機抽取8人,再從這8人中簡單隨機抽取2人調(diào)查他們每個月使用花唄消費的額度,求抽取的兩人年齡都在1826歲的概率.

參考答案:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中為自然對數(shù)的底數(shù).

1)若在定義域上是增函數(shù),求的取值范圍;

2)若直線是函數(shù)的切線,求實數(shù)的值;

3)當時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱臺中,是等邊三角形,二面角的平面角為.

(I)求證:;

(II)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,PQ分別為棱BC和棱CC1的中點,則下列說法正確的是( )

A.BC1//平面AQP

B.平面APQ截正方體所得截面為等腰梯形

C.A1D⊥平面AQP

D.異面直線QPA1C1所成的角為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的展開式中第5項與第7項的二項數(shù)系數(shù)相等,且展開式的各項系數(shù)之和為1024,則下列說法正確的是(

A.展開式中奇數(shù)項的二項式系數(shù)和為256

B.展開式中第6項的系數(shù)最大

C.展開式中存在常數(shù)項

D.展開式中含項的系數(shù)為45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】紋樣是中國傳統(tǒng)文化的重要組成部分,它既代表著中華民族的悠久歷史、社會的發(fā)展進步,也是世界文化藝術寶庫中的巨大財富.小楠從小就對紋樣藝術有濃厚的興趣.收集了如下9枚紋樣微章,其中4枚鳳紋徽章,5枚龍紋微章.小楠從9枚徽章中任取3枚,則其中至少有一枚鳳紋徽章的概率為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù),.

(1)求的單調(diào)區(qū)間;

(2)證明:存在,使得方程上有唯一解.

查看答案和解析>>

同步練習冊答案