【題目】隨著人民生活水平的日益提高,某小區(qū)居民擁有私家車的數(shù)量與日俱增.由于該小區(qū)建成時(shí)間較早,沒有配套建造地下停車場,小區(qū)內(nèi)無序停放的車輛造成了交通的擁堵.該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年小區(qū)登記在冊(cè)的私家車數(shù)量(累計(jì)值,如147表示2016年小區(qū)登記在冊(cè)的所有車輛數(shù),其余意義相同),得到如下數(shù)據(jù):
編號(hào) | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
數(shù)量(單位:輛) | 37 | 104 | 147 | 196 | 216 |
(1)若私家車的數(shù)量與年份編號(hào)滿足線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測2020年該小區(qū)的私家車數(shù)量;
(2)小區(qū)于2018年底完成了基礎(chǔ)設(shè)施改造,劃設(shè)了120個(gè)停車位.為解決小區(qū)車輛亂停亂放的問題,加強(qiáng)小區(qū)管理,物業(yè)公司決定禁止無車位的車輛進(jìn)入小區(qū).由于車位有限,物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式將車位對(duì)業(yè)主出租,租期一年,競拍方案如下:①截至2018年己登記在冊(cè)的私家車業(yè)主擁有競拍資格;②每車至多中請(qǐng)一個(gè)車位,由車主在競拍網(wǎng)站上提出申請(qǐng)并給出自己的報(bào)價(jià);③根據(jù)物價(jià)部門的規(guī)定,競價(jià)不得超過1200元;④申請(qǐng)階段截止后,將所有申請(qǐng)的業(yè)主報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則以提出申請(qǐng)的時(shí)間在前的業(yè)主成交,為預(yù)測本次競拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競拍資格的40位業(yè)主,進(jìn)行了競拍意向的調(diào)查,并對(duì)他們的擬報(bào)競價(jià)進(jìn)行了統(tǒng)計(jì),得到如圖頻率分布直方圖:
(i)求所抽取的業(yè)主中有意向競拍報(bào)價(jià)不低于1000元的人數(shù);
(ii)如果所有符合條件的車主均參與競拍,利用樣本估計(jì)總體的思想,請(qǐng)你據(jù)此預(yù)測至少需要報(bào)價(jià)多少元才能競拍車位成功?(精確到整數(shù))
參考公式及數(shù)據(jù):對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計(jì)分別為:;.
【答案】(1),320;(2)(i)12人;(ii)936.
【解析】
(1)由表中數(shù)據(jù),計(jì)算得與的值,則線性回歸方程可求,取x=7求得y值得答案;
(2)(i)由頻率直方圖求得有意競拍報(bào)價(jià)不低于1000元的頻率,乘以40得答案.
(ii)由題意,.由頻率直方圖估算知,報(bào)價(jià)應(yīng)該在900-1000之間,設(shè)報(bào)價(jià)為x百元,可得.求解x值即可.
(1)由表中數(shù)據(jù),計(jì)算得,,,.
故所求線性回歸方程為,
令x=7,得;
(2)(i)由頻率直方圖可知,有意競拍報(bào)價(jià)不低于1000元的頻率為:
(0.25+0.05)×1=0.3,
共抽取40位業(yè)主,則40×0.3=12,
∴有意競拍不低于1000元的人數(shù)為12人.
(ii)由題意,.
由頻率直方圖估算知,報(bào)價(jià)應(yīng)該在900-1000之間,
設(shè)報(bào)價(jià)為x百元,
則.
解得x≈9.36.
∴至少需要報(bào)價(jià)936元才能競拍成功.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方為 (為參數(shù)),以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)設(shè),,為直線與曲線的兩個(gè)交點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,,分別是橢圓的左、右焦點(diǎn),離心率,過橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說明理由;
(Ⅲ)設(shè)點(diǎn)是一個(gè)動(dòng)點(diǎn),若直線的斜率存在,且為中點(diǎn),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“搜索指數(shù)”是網(wǎng)民通過搜索引擎,以每天搜索關(guān)鍵詞的次數(shù)為基礎(chǔ)所得到的統(tǒng)計(jì)指標(biāo).“搜索指數(shù)”越大,表示網(wǎng)民對(duì)該關(guān)鍵詞的搜索次數(shù)越多,對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度也越高.下圖是2017年9月到2018年2月這半年中,某個(gè)關(guān)鍵詞的搜索指數(shù)變化的走勢圖.
根據(jù)該走勢圖,下列結(jié)論正確的是( )
A. 這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度呈周期性變化
B. 這半年中,網(wǎng)民對(duì)該關(guān)鍵詞相關(guān)的信息關(guān)注度不斷減弱
C. 從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來看,去年10月份的方差小于11月份的方差
D. 從網(wǎng)民對(duì)該關(guān)鍵詞的搜索指數(shù)來看,去年12月份的平均值大于今年1月份的平均值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為圓的直徑,點(diǎn)在圓上,,矩形所在平面和圓所在的平面互相垂直,已知.
(1)求證:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形,,均為正方形,點(diǎn)M是的中點(diǎn),點(diǎn)H在線段上,且與平面所成角的正弦值為.
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為F,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn).
(1)若,求直線AB的斜率;
(2)設(shè)點(diǎn)M在線段AB上運(yùn)動(dòng),原點(diǎn)O關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為C,求四邊形OACB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為和.
(I)求曲線在點(diǎn)處的切線方程;
(II)求函數(shù)的單調(diào)區(qū)間;
(III)求函數(shù)在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某商場隨機(jī)抽取了2000件商品,按商品價(jià)格(元)進(jìn)行統(tǒng)計(jì),所得頻率分布直方圖如圖所示.記價(jià)格在,,對(duì)應(yīng)的小矩形的面積分別為,且.
(1)按分層抽樣從價(jià)格在,的商品中共抽取6件,再從這6件中隨機(jī)抽取2件作價(jià)格對(duì)比,求抽到的兩件商品價(jià)格差超過800元的概率;
(2)在清明節(jié)期間,該商場制定了兩種不同的促銷方案:
方案一:全場商品打八折;
方案二:全場商品優(yōu)惠如下表,如果你是消費(fèi)者,你會(huì)選擇哪種方案?為什么?(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表)
商品價(jià)格 | ||||||
優(yōu)惠(元) | 30 | 50 | 140 | 160 | 280 | 320 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com