【題目】搶“微信紅包”已經(jīng)成為中國百姓歡度春節(jié)時非常喜愛的一項活動.小明收集班內(nèi)20名同學(xué)今年春節(jié)期間搶到紅包金額(元)如下(四舍五入取整數(shù)):
102 52 41 121 72
162 50 22 158 46
43 136 95 192 59
99 22 68 98 79
對這20個數(shù)據(jù)進行分組,各組的頻數(shù)如下:
(Ⅰ)寫出m,n的值,并回答這20名同學(xué)搶到的紅包金額的中位數(shù)落在哪個組別;
(Ⅱ)記C組紅包金額的平均數(shù)與方差分別為、,E組紅包金額的平均數(shù)與方差分別為、,試分別比較與、與的大。唬ㄖ恍鑼懗鼋Y(jié)論)
(Ⅲ)從A,E兩組所有數(shù)據(jù)中任取2個,求這2個數(shù)據(jù)差的絕對值大于100的概率.
【答案】(Ⅰ)m=4,n=2,B;(Ⅱ) <, <;(Ⅲ) .
【解析】試題分析:(Ⅰ)由題設(shè)數(shù)據(jù)表,即可求解得知,作出判斷;
(Ⅱ)根據(jù)平均數(shù)和方程的公式,分別計算的值,即作出比較;
(Ⅲ)由題意組兩個數(shù)據(jù)為, 組兩個數(shù)據(jù)為,列出基本事件的總數(shù),找到滿足條件的基本事件的個數(shù),利用古典概型的概率計算公式,即可求解.
試題解析:
(1)m=4,n=2,B;
(2)<, <;
(3)A組兩個數(shù)據(jù)為22,22,E組兩個數(shù)據(jù)為162,192任取兩個數(shù)據(jù),可能的組合為
(22,22),(22,162),(22,192),(22,162),(22,192),(162,192),共6種結(jié)果記數(shù)據(jù)差的絕對值大于100為事件A,事件A包括4種結(jié)果所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次猜燈謎活動中,共有20道燈謎,兩名同學(xué)獨立競猜,甲同學(xué)猜對了12個,乙同學(xué)猜對了8個,假設(shè)猜對每道燈謎都是等可能的,試求:
(1)任選一道燈謎,恰有一個人猜對的概率;
(2)任選一道燈謎,甲、乙都沒有猜對的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列抽取樣本的方式屬于簡單隨機抽樣的個數(shù)為( )
①從無限多個個體中抽取100個個體作為樣本.
②盒子里共有80個零件,從中選出5個零件進行質(zhì)量檢驗.在抽樣操作時,從中任意拿出一個零件進行質(zhì)量檢驗后再把它放回盒子里.
③從20件玩具中一次性抽取3件進行質(zhì)量檢驗.
④某班有56名同學(xué),指定個子最高的5名同學(xué)參加學(xué)校組織的籃球賽.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)2017年招聘員工,其中A、B、C、D、E五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
(Ⅰ)從表中所有應(yīng)聘人員中隨機選擇1人,試估計此人被錄用的概率;
(Ⅱ)從應(yīng)聘E崗位的6人中隨機選擇1名男性和1名女性,求這2人均被錄用的概率;
(Ⅲ)表中A、B、C、D、E各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于5%),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,,且.
(1)當(dāng)時,函數(shù)在處的切線與直線平行,試求m的值;
(2)當(dāng)時,令,若函數(shù)有兩個極值點,且,求 的取值范圍;
(3)當(dāng)時,試討論函數(shù)的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大型活動即將舉行,為了做好接待工作,組委會招募了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛運動,其余人不喜愛運動.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:
喜愛運動 | 不喜愛運動 | 總計 | |
男志愿者 | |||
女志愿者 | |||
總計 |
(2)根據(jù)列聯(lián)表判斷能否有℅的把握認為性別與喜愛運動有關(guān)?
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一系列對應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時,方程 恰有兩個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線的焦點,是拋物線在第一象限內(nèi)的點,且,
(I) 求點的坐標(biāo);
(II)以為圓心的動圓與軸分別交于兩點,延長分別交拋物線于兩點;
①求直線的斜率;
②延長交軸于點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)a=1時,若關(guān)于的不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com