【題目】已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
(1)若a= ,求A∩B.
(2)若A∩B=,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:當(dāng)a= 時(shí),A={x| },B={x|0<x<1}

∴A∩B={x|0<x<1}


(2)解:若A∩B=

當(dāng)A=時(shí),有a﹣1≥2a+1

∴a≤﹣2

當(dāng)A≠時(shí),有

∴﹣2<a≤ 或a≥2

綜上可得, 或a≥2


【解析】(1)當(dāng)a= 時(shí),A={x| },可求A∩B(2)若A∩B=,則A=時(shí),A≠時(shí),有 ,解不等式可求a的范圍
【考點(diǎn)精析】認(rèn)真審題,首先需要了解集合的交集運(yùn)算(交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)在(﹣∞,0)∪(0,+∞)上有定義,在(0,+∞)上是增函數(shù),f(1)=0,又知函數(shù)g(θ)=sin2θ+mcosθ﹣2m, ,集合M={m|恒有g(shù)(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是否存在a,b,c使等式( 2+( 2+( 2+…+( 2= 對(duì)一切n∈N*都成立若不存在,說明理由;若存在,用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)雞場(chǎng)是一面靠墻,三面用鐵絲網(wǎng)圍成的矩形場(chǎng)地,如果鐵絲網(wǎng)長(zhǎng)40m,那么圍成的場(chǎng)地面積最大為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a是常數(shù),且a>0).對(duì)于下列命題:①函數(shù)f(x)的最小值是﹣1;②函數(shù)f(x)在R上是單調(diào)函數(shù);③若f(x)>0在[ ,+∞)上恒成立,則a的取值范圍是a>1;④對(duì)任意x1<0,x2<0且x1≠x2 , 恒有f( )> .其中正確命題的序號(hào)是(
A.①②
B.①③
C.③④
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導(dǎo)函數(shù).
(1)g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求g1(x),g2(x),g3(x),并猜想gn(x)的表達(dá)式(不必證明);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)n∈N+ , 比較g(1)+g(2)+…+g(n)與n﹣f(n)的大小,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)是定義在R上的可導(dǎo)函數(shù),且滿足(x﹣1)f′(x)≥0,則必有(
A.f(0)+f(2)<2f(1)
B.f(0)+f(2)>2f(1)
C.f(0)+f(2)≤2f(1)
D.f(0)+f(2)≥2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解今年某校高三畢業(yè)班準(zhǔn)備報(bào)考飛行員學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為15.

(1)求該校報(bào)考飛行員的總?cè)藬?shù);

(2)以這所學(xué)校的樣本數(shù)據(jù)來估計(jì)全省的總體數(shù)據(jù),若從全省報(bào)考飛行員的同學(xué)中(人數(shù)很多)任選三人,設(shè)表示體重超過65公斤的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三個(gè)數(shù)a、b、c∈(0, ),且cosa=a,sin(cosb)=b,cos(sinc)=c,則a、b、c從小到大的順序是

查看答案和解析>>

同步練習(xí)冊(cè)答案