分析 (Ⅰ)設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),利用點(diǎn)到直線的距離公式通過(guò)最小值,求出P點(diǎn)坐標(biāo).
(Ⅱ)設(shè)點(diǎn)A的坐標(biāo)為$({\frac{y_1^2}{4},{y_1}})$,顯然y1≠2.當(dāng)y1=-2時(shí),求出直線AP的方程;當(dāng)y1≠-2時(shí),求出直線AP的方程與直線l的方程y=x+2聯(lián)立,可得點(diǎn)Q的縱坐標(biāo),求出B點(diǎn)的縱坐標(biāo),推出BQ∥x軸,求出直線AC的方程與拋物線方程y2=4x聯(lián)立,求得點(diǎn)B的縱坐標(biāo),然后推出結(jié)果BQ∥x軸.
解答 解:(Ⅰ)設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),則$y_0^2=4{x_0}$,
所以,點(diǎn)P到直線l的距離$d=\frac{{|{{x_0}-{y_0}+2}|}}{{\sqrt{2}}}=\frac{{|{\frac{y_0^2}{4}-{y_0}+2}|}}{{\sqrt{2}}}=\frac{{|{{{({{y_0}-2})}^2}+4}|}}{{4\sqrt{2}}}≥\frac{{\sqrt{2}}}{2}$.
當(dāng)且僅當(dāng)y0=2時(shí)等號(hào)成立,此時(shí)P點(diǎn)坐標(biāo)為(1,2).…(4分)
(Ⅱ)設(shè)點(diǎn)A的坐標(biāo)為$({\frac{y_1^2}{4},{y_1}})$,顯然y1≠2.
當(dāng)y1=-2時(shí),A點(diǎn)坐標(biāo)為(1,-2),直線AP的方程為x=1;
當(dāng)y1≠-2時(shí),直線AP的方程為$y-2=\frac{{{y_1}-2}}{{\frac{y_1^2}{4}-1}}({x-1})$,
化簡(jiǎn)得4x-(y1+2)y+2y1=0;
綜上,直線AP的方程為4x-(y1+2)y+2y1=0.
與直線l的方程y=x+2聯(lián)立,可得點(diǎn)Q的縱坐標(biāo)為${y_Q}=\frac{{2{y_1}-8}}{{{y_1}-2}}$.
當(dāng)$y_1^2=8$時(shí),直線AC的方程為x=2,可得B點(diǎn)的縱坐標(biāo)為yB=-y1.
此時(shí)${y_Q}=\frac{{2{y_1}-8}}{{{y_1}-2}}=2-\frac{4}{{{y_1}-2}}=2-\frac{{4({{y_1}+2})}}{y_1^2-4}=-{y_1}$,
即知BQ∥x軸,
當(dāng)$y_1^2≠8$時(shí),直線AC的方程為$y-2=\frac{{{y_1}-2}}{{\frac{y_1^2}{4}-1}}({x-2})$,
化簡(jiǎn)得$({4{y_1}-8})x-({y_1^2-8})y+({2y_1^2-8{y_1}})=0$,
與拋物線方程y2=4x聯(lián)立,消去x,
可得$({{y_1}-2}){y^2}-({y_1^2-8})y+({2y_1^2-8{y_1}})=0$,
所以點(diǎn)B的縱坐標(biāo)為${y_B}=\frac{y_1^2-8}{{{y_1}-2}}-{y_1}=\frac{{2{y_1}-8}}{{{y_1}-2}}$.
從而可得BQ∥x軸,
所以,BQ∥x軸.…(13分)
點(diǎn)評(píng) 本題主要考查拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)、直線方程、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化、特殊與一般,分類與整合等數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1)∪(2,+∞) | B. | (-∞,-2)∪(1,+∞) | C. | (1,2) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2015}-1$ | C. | $\sqrt{2016}-1$ | D. | $\sqrt{2017}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{33}{65}$或$\frac{63}{65}$ | B. | $\frac{63}{65}$ | C. | $\frac{33}{65}$ | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,-$\frac{1}{3}$) | B. | (-3,-1) | C. | (-1,+∞) | D. | (-∞,-1)∪(-$\frac{1}{3}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com