11.已知數(shù)列{an}滿足a1=$\frac{5}{3}$,3an+1-2an=2n+5.
(1)求證:數(shù)列{an-2n+1}為等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

分析 (1)由條件構(gòu)造3[an+1-2(n+1)+1]=2(an-2n+1),再由等比數(shù)列的定義,即可得證;
(2)由(1)可得an-2n+1=($\frac{2}{3}$)n,即an=($\frac{2}{3}$)n+(2n-1),再由數(shù)列的求和方法:分組求和,運(yùn)用等差數(shù)列和等比數(shù)列的求和公式,即可得到.

解答 解:(1)證明:數(shù)列{an}滿足a1=$\frac{5}{3}$,3an+1-2an=2n+5,
可得3[an+1-2(n+1)+1]=2(an-2n+1),
令bn=an-2n+1,則bn+1=$\frac{2}{3}$bn,
且b1=a1-2+1=$\frac{2}{3}$,
則數(shù)列{an-2n+1}為首項(xiàng)和公比均為$\frac{2}{3}$的等比數(shù)列;
(2)由(1)可得an-2n+1=($\frac{2}{3}$)n
即an=($\frac{2}{3}$)n+(2n-1),
數(shù)列{an}的前n項(xiàng)和Sn=[$\frac{2}{3}$+$\frac{4}{9}$+…+($\frac{2}{3}$)n]+(1+3+…+2n-1)
=$\frac{\frac{2}{3}(1-\frac{{2}^{n}}{{3}^{n}})}{1-\frac{2}{3}}$+$\frac{1}{2}$n(1+2n-1)
=n2+2-$\frac{{2}^{n+1}}{{3}^{n}}$.

點(diǎn)評(píng) 本題考查等比數(shù)列的定義和求和公式的運(yùn)用,以及數(shù)列的求和方法:分組求和,同時(shí)考查構(gòu)造法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{2}{x-1}$,x∈[2,6]
(1)求證:函數(shù)f(x)是區(qū)間[2,6]上的減函數(shù);
(2)求函數(shù)f(x)在區(qū)間[2,6]內(nèi)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.二次函數(shù)y=f(x)的圖象上有三點(diǎn)A(-1,3),B(3,3),C(1,-1)
(1)求函數(shù)y=f(x)的解析式;
(2)寫(xiě)出函數(shù)y=f(x)的單調(diào)區(qū)間,并求其在區(qū)間[0,3]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.函數(shù)f(x)的定義域是(0,+∞),滿足對(duì)于任意x,y>0,有 f($\frac{x}{y}$)=f(x)-f(y),且當(dāng)x>1時(shí),有f(x)>0
(1)求f(1)的值;
(2)判斷并證明f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(4)若f(6)=1,解不等式f(x+3)-f($\frac{1}{3}$)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z滿足$\frac{1-z}{1+z}=i$,則|z|=( 。
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)P(-2,-2),Q(0,-1),取一點(diǎn)R(2,m),使得PR+PQ最小,那么實(shí)數(shù)m的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.老師要求同學(xué)們做一個(gè)三角形,使它的三條高分別為:$\frac{1}{2}$,1,$\frac{2}{5}$,則( 。
A.同學(xué)們做不出符合要求的三角形B.能做出一個(gè)銳角三角形
C.能做出一個(gè)直角三角形D.能做出一個(gè)鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=(x2-2ax)lnx+bx2,a,b∈R.
(1)當(dāng)a=1,b=-1時(shí),設(shè)g(x)=(x-1)2lnx+x,求證:對(duì)任意的x>1,g(x)-f(x)>x2+x+e-e2;
(2)當(dāng)b=2時(shí),若對(duì)任意x∈[1,+∞),不等式2f(x)>3x2+a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列選項(xiàng)中與函數(shù)y=x是同一函數(shù)的是( 。
A.$y=\root{3}{x^3}$B.$y={(\sqrt{x})^2}$C.$y=\sqrt{x^2}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案