數(shù)列{an}中,a3=1,a1+a2+…+an=an+1(n=1,2,3…).
(Ⅰ)求a1,a2;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn;
(Ⅲ)設(shè)bn=log2Sn,存在數(shù)列{cn}使得cn•bn+3•bn+4=1+n(n+1)(n+2)Sn,試求數(shù)列{cn}的前n項(xiàng)和.
解:(Ⅰ)∵a
1=a
2,a
1+a
2=a
3,∴2a
1=a
3=1,∴a
1=
,a
2=
.…(4分)
(Ⅱ)∵S
n=a
n+1=S
n+1-S
n,∴2S
n=S
n+1,
=2,…(6分)
∴{S
n}是首項(xiàng)為
,公比為2的等比數(shù)列.
∴S
n=
2
n-1=2
n-2.…(8分)
(Ⅲ)S
n=
(2
n-1)=2
n-2,b
n=n-2,b
n+3=n+1,b
n+4=n+2,
∵c
n•b
n+3•b
n+4=1+n(n+1)(n+2)S
n,∴c
n•(n+1)(n+2)=1+n(n+1)(n+2)2
n-2,
即c
n=
+n2
n-2.…(10分)
令A(yù)=
+
+…+
=
-
+
+…+
=
-
.…(12分)
令B=1•2
-1+2•2
0+3•2
1+4•2
2+…+n2
n-2,①
2B=1•2
0+2•2
1+3•2
2+…+(n-1)2
n-2+n2
n-1,②
②-①得
B=n2
n-1-2
-1-2
0-2
1-…-2
n-2=n2
n-1-
=(n-1)2
n-1+
,
∴c
1+c
2+…+c
n=
-
+(n-1)2
n-1+
=(n-1)2
n-1+
.…(14分)
分析:(Ⅰ)由題意可得,a
1=a
2,a
1+a
2=a
3
(Ⅱ)由S
n=a
n+1=S
n+1-S
n,可得2S
n=S
n+1,
=2,從而可得{S
n}為等比數(shù)列,進(jìn)而可求
(Ⅲ)由(II)可得,S
n=
(2
n-1)=2
n-2,b
n=n-2,從而可求c
n=
+n2
n-2,令A(yù)=
+
+…+
,利用分組求和,令B=1•2
-1+2•2
0+3•2
1+4•2
2+…+n2
n-2,利用錯(cuò)位相減可求,從而可求
點(diǎn)評:本題主要考查了利用遞推公式求解數(shù)列的通項(xiàng)公式,還考查了裂項(xiàng)求和及錯(cuò)位相減求解數(shù)列的和,這也是數(shù)列求和的重要的兩個(gè)方法.