【題目】已知點是圓心為的圓上的動點,點, 為坐標(biāo)原點,線段的垂直平分線交于點.
(1)求動點的軌跡的方程;
(2)過原點作直線交(1)中的軌跡于點,點在軌跡上,且,點滿足,試求四邊形的面積的取值范圍.
【答案】(1);(2).
【解析】【試題分析】(1)借助橢圓的定義分析求解;(2)先借助題設(shè)將題設(shè)條件進行等價轉(zhuǎn)化,再建立目標(biāo)函數(shù)運用基本不等式進行分析探求:
(1)由于點在線段的垂直平分線上,故,因此,故點軌跡為橢圓,其中, ,因此點的軌跡的方程為.
(2)由,知四邊形為平行四邊形,故.
(i)當(dāng)為長軸(或短軸)時,依題意,知點就是橢圓的上下頂點(或左右頂點),此時,即.
(ii)當(dāng)直線的斜率存在且不為0時,設(shè)斜率為,則直線的方程為,聯(lián)立方程,消去,得,故, ,
所以,由,知為等腰三角形, 為的中點,所以,所以直線的方程為,
同理,得,
,
設(shè),則,
而,所以當(dāng)時, ,又,所以,
所以,
綜上所述, .
所以四邊形的面積的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的不等式的解集為;命題q:函數(shù)為增函數(shù).命題r:a滿足.
(1)若p∨q是真命題且p∧q是假題.求實數(shù)a的取值范圍.
(2)試判斷命題¬p是命題r成立的一個什么條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓:,其中,,分別為其左,右焦點,點是橢圓上一點,,且.
(1)當(dāng),,且時,求的值;
(2)若,試求橢圓離心率的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:
(1)朝上的一面數(shù)相等的概率;
(2)朝上的一面數(shù)之和小于5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一枚質(zhì)地均勻的骰子,連續(xù)投擲兩次,計算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點數(shù)之和是7的結(jié)果有多少種?
(3)向上的點數(shù)之和是7的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將數(shù)字1,2,3,…, ()全部填入一個2行列的表格中,每格填一個數(shù)字,第一行填入的數(shù)字依次為, ,…, ,第二行填入的數(shù)字依次為, ,…, .記.
(Ⅰ)當(dāng)時,若, , ,寫出的所有可能的取值;
(Ⅱ)給定正整數(shù).試給出, ,…, 的一組取值,使得無論, ,…, 填寫的順序如何, 都只有一個取值,并求出此時的值;
(Ⅲ)求證:對于給定的以及滿足條件的所有填法, 的所有取值的奇偶性相同.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com