【題目】已知雙曲線(,),,是雙曲線的兩個(gè)頂點(diǎn),是雙曲線上的一點(diǎn),且與點(diǎn)在雙曲線的同一支上,關(guān)于軸的對(duì)稱點(diǎn)是,若直線,的斜率分別是,,且,則雙曲線的離心率是( )
A.B.C.D.
【答案】A
【解析】
由雙曲線的標(biāo)準(zhǔn)方程可知焦點(diǎn)在軸上,設(shè)出點(diǎn)坐標(biāo),即可得點(diǎn)坐標(biāo);根據(jù)直線,的斜率乘積,結(jié)合斜率公式即可求得的等量關(guān)系,再由點(diǎn)在雙曲線上,代入即可得關(guān)系,進(jìn)而求得雙曲線的離心率.
雙曲線(,),,是雙曲線的兩個(gè)頂點(diǎn),
則雙曲線焦點(diǎn)在軸上,不妨設(shè),,
是雙曲線上的一點(diǎn),且與點(diǎn)在雙曲線的同一支上,關(guān)于軸的對(duì)稱點(diǎn)是,則,
由兩點(diǎn)間斜率公式可得直線的斜率,直線的斜率,
根據(jù)題意,
則,化簡(jiǎn)可得,
是雙曲線上的一點(diǎn),則,化簡(jiǎn)可得,
由上述兩式可得,即,
所以,
而雙曲線中滿足,所以,
則,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的方程x2﹣ax﹣1=0和3x2﹣6x+3﹣2a=0的實(shí)根分別為x1,x2和x3,x4.若x1<x3<x2<x4,則實(shí)數(shù)a的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.
(2)若,滿足不等式成立的正整數(shù)解有且僅有一個(gè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)x1,x2,x3,x4,x5的方差是2,則數(shù)據(jù)x1-1,x2-1,x3-1,x4-1,x5-1的方差是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù).
(1)試討論f(x)的單調(diào)性;
(2)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為x1,x2,x3,設(shè)x1<x2<x3,且的最大值是e2,求x1x3的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1,中,點(diǎn)M是棱BC的中點(diǎn).
(2)求證:A1C∥平面AB1M;
(2)如果AB=AC,求證AM⊥平面BCC1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“2019曹娥江國(guó)際馬拉松”在上虞舉行,現(xiàn)要選派5名志愿者服務(wù)于四個(gè)不同的運(yùn)動(dòng)員救助點(diǎn),每個(gè)救助點(diǎn)至少分配1人,若志愿者甲要求不到A救助點(diǎn),則不同的分派方案有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4支足球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.下列結(jié)論中正確的是( )
A.恰有四支球隊(duì)并列第一名為不可能事件B.有可能出現(xiàn)恰有三支球隊(duì)并列第一名
C.恰有兩支球隊(duì)并列第一名的概率為D.只有一支球隊(duì)名列第一名的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校矩形的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1:3,且成績(jī)分布在范圍內(nèi),規(guī)定分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng),按文理科用分層抽樣的放發(fā)抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖.
(Ⅰ)填寫下面的列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”;
(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式:,其中
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com