【題目】設(shè)是關(guān)于的方程的兩個(gè)不相等的實(shí)數(shù)根,那么過兩點(diǎn)的直線與圓的位置關(guān)系是(

A.相離B.相切C.相交D.的變化而變化

【答案】C

【解析】

根據(jù)方程有根可得,由根與系數(shù)的關(guān)系算出,再利用直線的斜率公式算出AB的斜率,利用中點(diǎn)坐標(biāo)公式算出AB的中點(diǎn),得出直線AB的方程,最后利用點(diǎn)到直線的距離公式,算出已知圓的圓心C到直線AB的距離小于圓C的半徑,可得直線與圓的位置關(guān)系是相交.

、是關(guān)于的方程的兩個(gè)不相等的實(shí)數(shù)根,

,即,且,,

可得,

因此直線AB的斜率,AB的中點(diǎn)為,

∴直線AB的方程為,化簡得,

又∵圓的圓心坐標(biāo)為,半徑,

∴圓心C到直線AB的距離為

,可得,

∴圓心C到直線AB的距離小于圓C的半徑,可得直線與圓的位置關(guān)系是相交.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是ABPD的中點(diǎn),且PA=AD

(Ⅰ)求證:AF∥平面PEC;

(Ⅱ)求證:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,真命題是( 。

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.是異面直線,是異面直線,則、是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分13分如圖,在直角坐標(biāo)系的頂點(diǎn)是原點(diǎn),始邊與軸正半軸重合終邊交單位圓于點(diǎn),,將角的終邊按逆時(shí)針方向旋轉(zhuǎn),交單位圓于點(diǎn),

1,;

2分別過軸的垂線垂足依次為,的面積為,的面積為,求角的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是關(guān)于的方程的兩個(gè)不相等的實(shí)數(shù)根,那么過兩點(diǎn)、的直線與圓的位置關(guān)系是(

A.相離B.相切C.相交D.的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxafx)是fx)的導(dǎo)函數(shù),若關(guān)于x的方程fx0有兩個(gè)不等的根,則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐DABC,O為線段AC上一點(diǎn),平面ADC⊥平面ABC,且△ADO,ABO為等腰直角三角形,斜邊AO=4.

()求證:ACBD;

()將△BDODO旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列說法正確的是( )

1的極小值點(diǎn);

2)函數(shù)有且只有1個(gè)零點(diǎn);

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則.

A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案