精英家教網 > 高中數學 > 題目詳情

【題目】已知等差數列滿足,數列的前項和為,且滿足.

(1)求數列的通項公式;

(2)數列滿足,求數列的前項和.

【答案】(1);(2.

【解析】試題分析:(1)設等差數列{an}的公差為d,利用等差中項的性質及已知條件“a1+a2+a3=9、a2+a8=18”可得公差,進而可得數列{an}的通項;利用“bn+1=Sn+1﹣Sn”及“b1=2b1﹣2”,可得公比和首項,進而可得數列{bn}的通項;

(2)利用,利用錯位相減法及等比數列的求和公式即得結論.

試題解析:

解:(1)設等差數列的公差為,

,即,

,即

,即,

.

兩式相減,得.

.

,

數列是首項和公比均為的等比數列, .

數列的通項公式分別為.

2)由(1)知,

,

兩式相減,得

,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓與直線都經過點.直線平行,且與橢圓交于兩點,直線軸分別交于兩點.

(1)求橢圓的方程;

(2)證明: 為等腰三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為梯形,平面平面

為側棱的中點,且.

(1)證明: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,(其中

(1)若,討論函數的單調性;

(2)若,求證:函數有唯一的零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,已知點以原點為極點, 軸的正半軸為極軸建立坐標系,曲線的極坐標方程為過點作極坐標方程為的直線的平行線,分別交曲線兩點.

1)寫出曲線和直線的直角坐標方程;

(2)若成等比數列,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學調查了某班全部名同學參加書法社團和演講社團的情況,數據如下表:(單位:人)

(1)能否由的把握認為參加書法社團和參加演講社團有關?

(附:

時,有的把握說事件有關;當,認為事件是無關的)

(2)已知既參加書法社團又參加演講社團的名同學中,有名男同學 , , , 名女同學, .現從這名男同學和名女同學中各隨機選人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】質檢部門對某工廠甲、乙兩個車間生產的12個零件質量進行檢測.甲、乙兩個車間的零件質量(單位:克)分布的莖葉圖如圖所示.零件質量不超過20克的為合格.

(1)從甲、乙兩車間分別隨機抽取2個零件,求甲車間至少一個零件合格且乙車間至少一個零件合格的概率;

(2)質檢部門從甲車間8個零件中隨機抽取4件進行檢測,若至少2件合格,檢測即可通過,若至少3 件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;

(3)若從甲、乙兩車間12個零件中隨機抽取2個零件,用表示乙車間的零件個數,求的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了準確把握市場,做好產品計劃,特對某產品做了市場調查:先銷售該產品50天,統(tǒng)計發(fā)現每天的銷售量分布在,且銷售量的分布頻率

.

(Ⅰ)求的值.

(Ⅱ)若銷售量大于等于80,則稱該日暢銷,其余為滯銷,根據是否暢銷從這50天中用分層抽樣的方法隨機抽取5天,再從這5天中隨機抽取2天,求這2天中恰有1天是暢銷日的概率(將頻率視為概率).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2017·石家莊一模)祖暅是南北朝時期的偉大數學家,5世紀末提出體積計算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為(  )

A. ①② B. ①③

C. ②④ D. ①④

查看答案和解析>>

同步練習冊答案