【題目】如圖,在四棱錐中,底面為梯形,平面平面
為側(cè)棱的中點,且.
(1)證明: 平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)取的中點,連接.
為側(cè)棱的中點, .,再證四邊形為平行四邊形,則.故平面平面.平面平面.
(2)解:過點作于平面平面平面.
.
取的中點,如圖所示,以為原點,建立空間直角坐標系,
求出相應(yīng)點的坐標和相應(yīng)向量的坐標,求出平面的法向量及平面的一個法向量,再根據(jù)二面角為鈍角,可得二面角的余弦值為.
試題解析:(1)證明:取的中點,連接.
為側(cè)棱的中點, .
四邊形為平行四邊形,則.
平面平面.
平面平面.
(2)解:過點作于平面平面平面.
.
取的中點,如圖所示,以為原點,建立空間直角坐標系,
則.
.
設(shè)為平面的法向量.
則
取,則.
易證平面,則為平面的一個法向量.
,
由圖可知,二面角為鈍角.
二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為梯形,平面平面
為側(cè)棱的中點,且.
(1)證明: 平面;
(2)若點到平面的距離為,且,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點為拋物線的焦點,點為點關(guān)于原點的對稱點,點在拋物線上,則下列說法錯誤的是( )
A. 使得為等腰三角形的點有且僅有4個
B. 使得為直角三角形的點有且僅有4個
C. 使得的點有且僅有4個
D. 使得的點有且僅有4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若對任意的, 都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018屆高三·湖南十校聯(lián)考)已知函數(shù)f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當y≥1時, 的取值范圍是( )
A. B.
C. [1,3-3] D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 的焦點為,過拋物線上的動點(除頂點外)作的切線交軸于點.過點作直線的垂線(垂足為)與直線交于點.
(Ⅰ)求焦點的坐標;
(Ⅱ)求證:;
(Ⅲ)求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足,數(shù)列的前項和為,且滿足.
(1)求數(shù)列和的通項公式;
(2)數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),且對任意x>0,都有f′(x)>.
(1)判斷函數(shù)F(x)=在(0,+∞)上的單調(diào)性;
(2)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(3)請將(2)中結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com