如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①3是函數(shù)y=f(x)的極大值點(diǎn);
②1是函數(shù)y=f(x)的極值點(diǎn);
③當(dāng)x>3時(shí),f(x)>0恒成立;
④函數(shù)y=f(x)在x=-2處切線的斜率小于零;
⑤函數(shù)y=f(x)在區(qū)間(-2,3)上單調(diào)遞減.
則正確命題的序號(hào)是
 
(寫(xiě)出所有正確命題的序號(hào))
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:由圖象得出函數(shù)的單調(diào)區(qū)間,函數(shù)的極值點(diǎn),結(jié)合函數(shù)的性質(zhì)即可得出結(jié)論.
解答: 解:由圖象得:
在(-2,3)上,f′(x)<0,f(x)遞減,
在(3,+∞)上,f′(x)>0,f(x)遞增,
∴f(x)min=f(3),
故①②③錯(cuò)誤,④⑤正確,
故答案為:④⑤.
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,滲透了數(shù)形結(jié)合思想,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x
ax+b
(a≠0),f(2)=1,又方程f(x)=x有唯一解,且a1=1,an+1=f(an),Sn=a1a2+a2a3+…+an-1•an,如果存在正整數(shù)M,使得對(duì)一切正整數(shù)n,Sn≤M都成立,則M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,cos2
A
2
=
b+c
2c
(a,b,c分別為角A,B,C的對(duì)邊),則cos
A+B
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x3-6ax的單調(diào)遞減區(qū)間是(-2,2),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列問(wèn)題:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013,
令x=1,可得a0+a1+a2+…+a2013=(1-2•1)2013=-1,
令x=1,可得a0-a1+a2+…-a2013=(1+2•1)2013=32013,
請(qǐng)仿照這種“賦值法”,令x=0,得到a0=
 
,并求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos
12
的值等于(  )
A、
6
+
2
2
B、
2
2
C、
6
-
2
4
D、
3
+
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿(mǎn)足約束條件
x-y+2≥0
x-5y+10≤0
x+y-8≤0
,則z=3x-4y的取值范圍是( 。
A、[-11,3]
B、[-11,-3]
C、[-3,11]
D、[3,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
2
+
y2
m
=1和雙曲線
y2
3
-x2
=1的公共焦點(diǎn)分別為F1、F2,P為這兩條曲線的一個(gè)交點(diǎn),則cos∠F1PF2的值為(  )
A、
1
4
B、
1
3
C、
2
3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC,邊a,b是方程x2-2
3
x+2=0的兩根,角A,B滿(mǎn)足2cos(A+B)-1=0,求角C的度數(shù),邊c的長(zhǎng)度及△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案