【題目】已知向量 =( ), =(2,cos2x﹣sin2x).
(1)試判斷 能否平行?請說明理由.
(2)若x∈(0, ],求函數(shù)f(x)= 的最小值.

【答案】
(1)解: 不能平行,原因如下:

若向量 =( , ), =(2,cos2x﹣sin2x)平行,

=0,

,

,∴cos2x+2=0,即cos2x=﹣2不成立,

不能平行;


(2)解:f(x)= =

= =

= ,

由x∈(0, ]得,sinx∈(0, ],

∵f(x)= 隨著sinx的增大而減小,

∴當sinx= 時,f(x)取到最小值是


【解析】(1)判斷出 不能平行,利用向量平行的坐標運算列出方程,由二倍角的余弦公式化簡后,由余弦函數(shù)的值域進行判斷;(2)由向量的數(shù)量積坐標運算、二倍角的余弦公式以及變形化簡f(x),由正弦函數(shù)的性質(zhì)和f(x)的單調(diào)性求出f(x)的最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),直線.

(1)若直線與曲線有且僅有一個公共點,求公共點橫坐標的值;

(2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20名同學參加某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:

)求頻率分布直方圖中的值;

)分別求出成績落在, 中的學生人數(shù);

)從成績在的學生中任選2人,求此2人的成績都在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設計的一個程序框圖,則輸出的值為 ( )

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用一個平面去截正方體,對于截面的邊界,有以下圖形:①鈍角三角形;②直角梯形;③菱形;④正五邊形;⑤正六邊形.則不可能的圖形的選項為(
A.③④⑤
B.①②⑤
C.①②④
D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y﹣4=0相交于M、N兩點,且OM⊥ON(O為坐標原點),求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓過點, 分別為橢圓的右、下頂點,且

(1)求橢圓的方程;

(2)設點在橢圓內(nèi),滿足直線, 的斜率乘積為,且直線, 分別交橢圓于點,

(i) 若 關(guān)于軸對稱,求直線的斜率;

(ii) 求證: 的面積與的面積相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是一個等差數(shù)列,且a2=1,a5=﹣5.
(1)求{an}的通項an
(2)求{an}前n項和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

同步練習冊答案